Precision Spectroscopy of Light Hypernuclear Masses

Jan. 2015

First observation of a hypernucleus

Delayed Disintegration of a Heavy Nuclear Fragment: I*

By M. DANYSZ and J. PNIEWSKI Institute of Experimental Physics, University of Warsaw[†]

"An alternative explanation of the event may be sought in terms of the heavy neutral V-particle [...] It is possible that such particles exist not only as free particles, but also in bound states within nuclei."

- production in nuclear fragmentation
- identification through pionic decay

[M. Danysz & J. Pniewski, Philos. Mag. 7 (44), 348 (1953)]

List of known hypernuclear masses

El	Α	J(g.s.)	B _A (g.s.)	E1	A	J(g.s.)	B _A (g.s.)	
н	3 4	1/2+ 0+	0.13 5 2.04 4	N	14 15	3/2+ ^c		$-B_{\Lambda} = M_{HYP} - (M_{Core} + m_{\Lambda})$
He	4 5 6	0+ 1/2+	2.39 3 3.12 2 4.18 10	0	16		13.76 16	d
	8		7.16 70	0	16	0-	12.42 5	poor hypernuclei data compared to ordinary nuclei:
Lı	6 7	1/2+ ^a	5.58 3	AI	18 27			compared to orallary hadion.
	8 9	1-	6.80 3 8.50 12	Si	28 28	e	16.62	 nuclear structure information for
Be	7 8	1/2+	5.16 8 6.84 5 6.71 4	S Ca	32 40			~ 28 hypernuclides <i>vs.</i> 3175 nuclides
	10	1/24	9.11 22	V	51		20.02	
в	9 10 11		8.29 18 8.89 12 10.24 5	Y	89		23.1 <i>5</i>	 mass error given by error on Λ binding energy of
	12	1-	11.37 6	La	139	i.	24.5 12	~ 20-800 keV for
С	12 13	1- 1/2+	10.80 <i>18^b</i> 11.69 <i>12</i>	Pb	208	6	26.38	nypernuclei <i>Vs.</i> ε
	14	1.157979777 }	12.17 33	Bi	209	6		[Nuclear Wallet Cards, BNL, 2011]

Medium to heavy hypernuclei A > 14

Production spectroscopy

BNL-AGS 3 MeV (FWHM) [Pile et al., Phys. Rev. Lett. 66 (1991) 2585]

BNL

Precision spectroscopy of light hypernuclear masses

Jan. 2015

P Achenbach, U Mainz

Light hypernuclear masses $A \le 14$

Hypernuclear decay-pion spectroscopy in emulsion

Example for 4 H

The result is that the event is consistent only with a $_{\Lambda}$ H⁴ fragment undergoing mesonic twobody decay. The binding energy of the Λ in $_{\Lambda}$ H⁴ is then $B_{\Lambda} = 2.6 \pm 1.0$ Mev, which is consistent also with other measurements of this quantity.⁹

 $\Lambda^{\mathrm{H}^{4}\rightarrow\mathrm{He}^{4}+\pi^{-}+Q},$

where $Q = 54.6 \pm 1.0$ Mev.

[A.G. Ekspong et al., Phys. Rev. Lett. 3 (1959) 103]

Spectroscopy of light hypernuclei

Spectroscopy of light hypernuclei

superheavy unstable-core hyperisotopes exist because of the stabilizing role of the Λ-hyperon[Dalitz & Levi Setti, NC 30 (1963)]

unbound

core nucleus

unbd

Spectroscopy of light hypernuclei

undiscovered

The mass A = 3 System

World data on ${}^3_{\Lambda}$ H

about 200 analysed events from emulsion experiments

Precision spectroscopy of light hypernuclear masses

Jan. 2015 P Achenbach, U Mainz

World data on ³_AH

Two-body and three-body decays in agreement

Precision spectroscopy of light hypernuclear masses

Jan. 2015 P Achenbach, U Mainz

The mass A = 4 System

World data on A = 4 system

World data on 4 H

World data on A = 4 system

 ${}^{4}_{\Lambda}He^{decay}_{\to\to\pi^{-}+1}H^{+3}He: B = 2.42 \pm 0.05 \text{ MeV} }_{\Lambda}He^{decay}_{\to\to\pi^{-}+2^{1}H^{+2}H: B = 2.44 \pm 0.09 \text{ MeV} }$ 0.02 MeV difference Total: B = 2.42 ± 0.04 MeV [M. Juric et al. NP B52 (1973)]

The A = 4 isospin doublet

- Nucleon-hyperon interaction can be studied by strange mirror pairs
- Coulomb corrections are < 50 keV for the ${}^{4}_{\Lambda}$ H ${}^{4}_{\Lambda}$ He pair

Modern calculations on A = 4 system

Calculation	Interaction	$B_{\Lambda}(^{4}_{\Lambda}H_{gs})$	$B_{\Lambda}(^{4}_{\Lambda}He_{gs})$	ΔB _Λ (⁴ _Λ He- ⁴ _Λ H)
A. Nogga, H. Kamada and W. Gloeckle, PRL 88, 172501 (2002)	SC97e	1.47	1.54	0.07
e	SC89	2.14	1.80	0.34
H. Nemura. Y. Akaishi and Y. Suzuki, PRL 89, 142504 (2002)	SC97d	1.67	1.62	-0.05
	SC97e	2.06	2.02	-0.04
	SC97f	2.16	2.11	-0.05
	SC89	2.55	2.47	-0.08
E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yama PRC 65, 011301 (R) (2001)	AV8	2.33	2.28	-0.05

World data average

$2.04{\pm}0.04 \quad 2.39{\pm}0.03 \quad 0.35{\pm}0.06$

With precise spectroscopy details of NY-interaction can be inferred

Observation of ⁶_AH by FINUDA

$T_{\rm sum}$ (MeV)	p_{π^+} (MeV/c)	p_{π^-} (MeV/c)	$M(^{6}_{\Lambda}\mathrm{H})_{\mathrm{prod.}}$ (MeV)	$M(^{6}_{\Lambda} H)_{decay}$ (MeV)
202.6 ± 1.3	251.3 ± 1.1	135.1 ± 1.2	5802.33 ± 0.96	5801.41 ± 0.84
202.7 ± 1.3	250.1 ± 1.1	136.9 ± 1.2	5803.45 ± 0.96	5802.73 ± 0.84
202.1 ± 1.3	253.8 ± 1.1	131.2 ± 1.2	5799.97 ± 0.96	5798.66 ± 0.84

[FINUDA, PRL 108, 042501 (2012); arXiv:1203.1954v2 (2012)]

World data on ¹²_AC

In total only 6 events from 3 different decay modes

Hyperfragment decay-pion spectroscopy

Formation of hyperhydrogen on light nuclei

- first detection of hyperfragments in a spectrometer
- limited momentum resolution

[H. Tamura et al. Phys. Rev. C 40 (1989)]

Observation of ⁴_AH by FINUDA

gaussian function representing the ${}^{4}_{\Lambda}$ H mesonic decay contribution (dot-dashed (blue in the web version) curve); the fit gives a $\chi^2/\text{ndf} = 79.1/74$, a mean $\mu_p = (132.6 \pm 0.1)$ MeV/c and a standard deviation $\sigma_p = (1.2 \pm 0.1)$ MeV/c for the gaussian function, directly measuring the experimental resolution. For comparison, $p_{\pi^-} = (132.80 \pm 0.08)$ MeV/c from $B_{\Lambda}({}^{4}_{\Lambda}\text{H}) = 2.04 \pm 0.04$ MeV, as determined from emulsion studies [2]; hence the absolute uncertainty is 0.2 MeV/c. and the corresponding systematic uncertainty in the kinetic energy is then $\sigma_{Tsys}(\pi^-) = 0.14$ MeV. [FINUDA, arXiv:1203.1954v2 (2012)]

experimental resolution 2.8 MeV/c (FWHM) \rightarrow factor 2 worse compared to emulsion absolute calibration error (133.03 - 132.6) MeV/c ~ 400 keV/c

Hyperfragment decay-pion spectroscopy with electron beams

Jan. 2015

Electroproduction

hadronic system responds to electromagnetic field produced by scattered electron

$$E_{\text{CM}} = \sqrt{2E_{\gamma}M_{p} + M_{p}^{2}} = M_{\Lambda} + M_{K^{+}} = 1,6\text{GeV}$$
$$\Rightarrow \boxed{E_{\gamma} = 0,9\text{GeV}}$$

- 1. CEBAF accelerator at Jefferson Lab (US)
- 2. MAMI-C accelerator at Mainz University (Germany)

cross-section for hypernuclei formation
 very small (~100 nb/sr)
 strongly peaked at zero degree electron scattering angle
 falling with increasing kaon angle

 magnetic spectrometers with high resolving powers » 1 m: challenge for short-lived particles (kaon lifetime 12,5 ns!)

- forward-scattering region (< 10°) blocked by the exit beam-line
- kaon count rate small compared to background rates
- large rates of Bremsstrahlung and Møller scattering

Magnetic spectrometer facility at MAMI

Momentum resolution:

$$\delta p/p < 10^{-4}$$

Momentum acceptance:

$$\Delta p/p = 20\%$$

Accepted solid angle:

$$\Delta \Omega = 11.5^{\circ} \times 8.0^{\circ}$$

 $= 28 \,\mathrm{msr}$

Kaon survival probability:

Magnetic focusing spectrometers at MAMI:

- 3 high-resolution Δp/p ~ 10⁻⁴ spectrometers (SpekA,B,C)
- 1 short-orbit spectrometer (KAOS, since 2008)

Magnet Optics for the QSDD Design

Spectrometer		А	В	С
Configuration		QSDD	D	QSDD
Focussing properties		nt int	nt int	nt int
nondispersive plane		→pt	pt →pt pt →pt	→pt
Maximum momentum	[MeV/c]	735	870	551
Solid angle	[msr]	28	5.6	28
minimum angle		18°	7 °	18°
maximum angle		160°	62°	160°
Momentum acceptance	[%]	20	15	25
dispersive plane	[mrad]	±70	±70	±70
nondispersive plane	[mrad]	±100	±20	±100
long-target acceptance	[mm]	50	50	50
Angle of focal plane	[m]	45°	47°	45°
Length of focal plane	[m]	1.80	12.03	1.60
Dispersion (central)	[cm/%]	5.77	8.22	4.52
Magnigfication (central)	[0.53	0.85	0.51
Dispersion / Magnification	[cm/%]	10.83	9.64	8.81
Momentum resolution	C	10-4	10-4	10-4
angular resolution at target	[mrad]	≤ 3 3 - 5	<u>≤</u> 3 1	≤ 3 3 - 5
,	No. Marketta	6 9	÷	

[K.I. Blomqvist et al., Nucl. Inst. Meth. A 403 (1998)]

Precision spectroscopy of light hypernuclear masses

Jan. 2015 P Achenbach, U Mainz

Setup of Kaos

02/2007

AN SME

Precision spectroscopy of light hypernuclear masses

Jan. 2015 P Achenbach, U Mainz

06/2003

Particle detection system in KAOS

Kaon identification using TOF system

Reminder: Coincidence Method

Walther Bothe: The Nobel Prize in Physics 1954:

"for the coincidence method and his discoveries made therewith"

Fig. 7. Beispiel einer Koinzidenz. Streifenabstand $1/_{1000}$ Sekunde. Oben *e*-Ausschläge, unten $h\nu$ -Ausschlag.

"... we succeeded after a few failures to establish the accuracy of any temporal "coincidence" between the two pointer readings as being 10⁻⁴ sec."

Bothe's system: resolving time	$\delta t = 10^{-4} \text{ sec} = 100\ 000 \text{ ns}$	
DAQ rate	R = 300-500/min ~ 8 Hz	
modern system:	δt ~ 100 ps	
	R ~ kHz-MHz	
\rightarrow 5-6 orders of magnitude improvement		

Kaos spectrometer changed into zero-degree tagger

without absorber

- Suppression of large positron flux with 25 X₀ lead absorber wall
- Much cleaner spectra for all hadrons

Decay-pion spectroscopy results from MAMI

Race-Track Microtron (RTM)

Cascade of 3 RTMs with each 2 magnets + x times the same linac with radio-frequency acceleration (cw bunch structure 0.4 ns)

RTM3: single pass energy gain 7.5 MeV x 90 turns = 675 MeV total energy gain with only 163 kW RF power for 67.5 kW of beam power @100 mA

Harmonic Double Sided Microtron (HDSM)

9.0 MV / turn max gain

B_{max}=1.539 T

OSS N

LINAC II (2.45GHz)

9.3 MV / turn max gain

[K.-H. Kaiser et al., Nucl. Instr. Meth. A 593 (2008) 159]

Precision spectroscopy of light hypernuclear masses

Jan. 2015 P Achenbach, U Mainz

Experimental realization at MAMI

Primary Be	am
Energy	1.5 GeV
Target	
Material	9Be
Thickness	125 μm
Tilt angle	54 deg

Kaos		
Cent. Mom		+900 MeV/c
Detector		MWPC, TOF, AC

Spek-A, C	
Cent. Mom	- 115/ -125 MeV/c
Detector	DC, TOF, GC

Decay pion momentum accuracy

- elastic & inelastic scattering off Ta and C to calibrate spectrometers
- elastic line FWHM of 200 keV/c at 200 MeV/c momentum
- beam energy measured with absolute accuracy of ± 160 keV

Reaction identification

with cut on gas Cherenkov signal for electron rejection

- established clean tag on strangeness production at zero-degree
- decay-pion detection with Spectrometer A & C (dp/p <10⁻⁴)
- more than 1000 pion-kaon-coincidences from weak decays of hyperons

Hyperhydrogen peak search

local excess observed inside the hyperhydrogen search region

Precision spectroscopy of light hypernuclear masses

Jan. 2015 P Achenbach, U Mainz

Binding energy extraction

World data on A = 4 system

MAMI experiment confirmed Λ separation energy of ${}_{\Lambda}{}^{4}$ H: B $_{\Lambda} \sim 2.12 \pm 0.1$ MeV (MAMI 2014 prelim.)

Comparison of errors

Emulsion: dominated by statistical error MAMI: dominated (sofar) by systematic error of beam energy

Continuation of Experiment

- In 2014 next generation experiment performed with 5 x higher statistics
- Different target materials are under investigation
- Dominating systematic error can be reduced by improved calibrations

Conclusions and prospects

- Decay-pion spectroscopy it is now becoming a precision science
- Decay-pion spectroscopy gives access to ground state masses of light hypernuclei
- Precise measurements of the A = 4 system linked to understanding of charge symmetry breaking in AN interaction
- The accuracy of masses of many light hyperisotopes could be improved by this technique