H/He burning reactions on unstable nuclei for Nuclear Astrophysics

PJ Woods

University of Edinburgh

Explosive H/He burning in Binary Stars

Isaac Newton, Principia Mathematica (1666): 'from this fresh supply of new fuel those old stars, acquiring new splendour, may pass for new stars'

Elemental abundances in novae ejecta

J. José, M. Hernanz, C. Iliadis. Nucl Phys A, 777, (2006), 550-578

Presolar grains

- Grains of nova origin are thought to have a large ³⁰Si/²⁸Si ratio.
- Abundance of ³⁰Si is determined by the competition between the ³⁰P β⁺ decay and the ³⁰P(p,γ)³¹S reaction rate.

Novae Nucleosynthesis

Sensitivity to uncertainty in ${}^{30}P(p,\gamma){}^{31}S$ reaction rate

C. Iliadis, A. Champagne, J José et al., Astrophys. J. Suppl. Ser. 142, 105 (2002)

Reaction rate often dominated by a few resonances in Gamow burning window

Known ³¹S level scheme

D.G. Jenkins et al, Phys. Rev. C. 72. (2005)

week ending 29 JUNE 2012

Key Resonances in the ${}^{30}P(p, \gamma){}^{31}S$ Gateway Reaction for the Production of Heavy Elements in ONe Novae

D. T. Doherty,¹ G. Lotay,¹ P. J. Woods,¹ D. Seweryniak,² M. P. Carpenter,² C. J. Chiara,^{2,3} H. M. David,¹ R. V. F. Janssens,² L. Trache,⁴ and S. Zhu²

⁴He + ²⁸Si \rightarrow ³¹S + n fusion reaction

Pairing of new levels with analog states in mirror nucleus

$^{30}P(p,\gamma)^{31}S$ reaction rate using new resonance data

However, key resonance strengths, ω_{γ} , based on systematic values for proton spectroscopic factors

use transfer reactions to estimate Γ_p for (p, γ) reactions where resonance has $\Gamma_p << \Gamma_\gamma$, ω_γ is proportional to $\Gamma_{p.}$ $\Gamma_p \alpha P_1$ (barrier penetration factor) X S(spectroscopic factor)

P.J. Woods, A Kankainen, H. Schatz, et al. (d,n) transfer reaction cross-section measurements as a surrogate for (p,γ)

Primary beam: 18+ 150 MeV/u Ar

Particle identification: ³¹S

³¹S γ -ray energy spectrum

Levels above the proton threshold energy in ³¹S

Calculations of extracted Γ_p values from cross-section data being performed by F Nunes (MSU)

Galactic abundance distribution of the cosmic γ-ray emitter ²⁶Al

INTEGRAL satellite telescope - 2.8(8) M_{sun} of ²⁶Al in our galaxy [R. Diehl, *Nature* **439** 45(2006)]

Supernova Cycle

Stellar Life

For a 25 solar mass star:

Stage	Duration
H → He	7x10 ⁶ years
He → C	7x10 ⁵ years
C → O	600 years
O → Si	6 months
Si → Fe	1 day
Core Collapse	1/4 second

Hydrogen burning in Mg – Al Cycle

ISAC at TRIUMF

destruction of ²⁶AI burning in massive stars?

Identification of Key Astrophysical Resonances Relevant for the ${}^{26g}Al(p, \gamma){}^{27}Si$ Reaction in Wolf-Rayet Stars, AGB stars, and Classical Novae

G. Lotay,¹ P. J. Woods,¹ D. Seweryniak,² M. P. Carpenter,² R. V. F. Janssens,² and S. Zhu²

High resolution d(^{26g}Al,p)²⁷Al study of analog states of ²⁷Si resonances using Edinburgh TUDA Si array @ Triumf

150 MeV ^{26g}Al → $(CD_2)_n$ target I_{beam}~ 5*10⁸ pps

 \rightarrow Lower energy resonance strength much higher than expected?

The ¹⁵O(α,γ)¹⁹Ne reaction: the nuclear trigger of X-ray bursts

The Hot CNO Cycles

A NEW ESTIMATE OF THE ¹⁹Ne(p, γ)²⁰Na AND ¹⁵O(α , γ)¹⁹Ne REACTION RATES AT STELLAR ENERGIES

K. LANGANKE,¹ M. WIESCHER,² AND W. A. FOWLER W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena

AND

J. GÖRRES Department of Physics, University of Pennsylvania, Philadelphia Received 1985 May 24; accepted 1985 August 19

¹⁵O(α ,γ)¹⁹Ne reaction rate predicted to be dominated by a single resonance at a CoM energy of 504 keV

Key unknown - α-decay probability from excited state at 4.03 MeV in ¹⁹Ne compared to γ-decay, predicted to be ~ 10^{-4}

PHYSICAL REVIEW C 67, 065808 (2003)

Astrophysical rate of ${}^{15}O(\alpha, \gamma){}^{19}Ne$ via the (p, t) reaction in inverse kinematics

B. Davids,* A. M. van den Berg, P. Dendooven, F. Fleurot,[†] M. Hunyadi, M. A. de Huu, R. H. Siemssen, H. W. Wilschut, and H. J. Wörtche

Kernfysisch Versneller Instituut, Zernikelaan 25, 9747 AA Groningen, The Netherlands

Detector Pocket

•16x16 strips

Particle ID plot for DSSD

TSR@ISOLDE – Injection of RIBs into ring at MeV/u energies

Spokesperson: K Blaum (Heidelberg)

Deputies: R Raabe(Leuven), PJW (Edinburgh)

entire issue of EPJ 207 1-117 (2012)

ISOLDE site (west) side

- Installation above the CERN infrastructure-tunnel

Future ^{26m}AI(d,p)²⁷AI study on TSR storage ring@ISOLDE

In-ring DSSD System for ultra-high resolution (d,p), (p,d) and (³He,d) transfer studies of astrophysical resonances
→ Newly funded UK ISOL-SRS project (Spokesperson PJW)

Figure 1: Illustration of upstream or downstream assembly of 4 DSSDs about beam axis

For ultra high resolution mode resolution should be entirely limited by transverse beam emittance

 \rightarrow resolutions approaching 10 keV FWHM attainable

Pioneering new technique on ESR (Heil, Reifarth) – heavy recoils detected with double-sided silicon strip detector (Edinburgh)

New DSSD system developed (Edinburgh/GSI/Frankfurt) for p-process capture reactions in Gamow burning window → CRYRING@GSI

Puzzle of the origin of heavy 'p-nuclei' – abundant proton-rich isotopes eg ⁹²Mo and ⁹⁶Ru

Summary

We are entering an exciting phase of development combining a variety of different experimental approaches to determine key H/He burning reaction rates for explosive astrophysical scenarios such as Novae, Supernovae and X-ray bursts.