CERN

Hirschegg 2015

High-precision mass measurements on neutron-rich radionuclides with ISOLTRAP for nuclear astrophysics studies

Frank Wienholtz - University of Greifswald for the ISOLTRAP Collaboration

- Motivation and Introduction
- ISOLTRAP setup
 - ➢ 82Zn
 - Neutron-rich Ca
 - Neutron-rich Cd
- Summary and Outlook

Motivation

Why measure the mass of neutron rich nuclei?

CERN accelerator complex

CERN accelerator complex

ISOLDE – Isotope Separator On-Line (DEvice) / CERN

Production of radioactive nuclides via *fission*, or *fragmentation* reactions in a thick target, irradiated with a proton beam of 1.4GeV and an intensity up to 2µA

ISOLTRAP overview

ISOLTRAP overview: the Penning-trap / ToF ICR

ISOLTRAP overview: MR-ToF-MS¹

1: Wollnik & Przewloka, Int. J. Mass Spectrom. Ion Proc. 96, 267 (1990);

Wolf *et al.*, IJMS **313**, 8 (2012); Wolf *et al.*, IJMS 349-350, 123 (2013);

The first mass measurement of ⁸²Zn

First application of an MR-ToF-MS to short-lived nuclides

Wolf et al., PRL 110, 041101 (2013); NIM A 686, 82 (2012)

First application of an MR-ToF-MS to short-lived nuclides

ToF-ICR mass measurement

Wolf et al., PRL 110, 041101 (2013); NIM A 686, 82 (2012)

Audi et al., Chinese Phys. C 36, 1157 (2012); Wolf et al., PRL 110, 041101 (2013)

R=10km

inner crust

outer crust

BPS-model¹ of neutron-star outer crust:

- masses of n-rich nuclei \geq
- 82Zn predicted by some mass models²
- first mass measurement: 82Zn is not part of the outer crust
- agreement with astronomical observations of neutron stars³

1: Baym, Pethick & Sutherland, ApJ 170, 299 (1971); 2: Pearson, PRC 83, 065810 (2011); 3: Demorest et al., Nature 467, 1081 (2010); Antoniadis, Science 340, 1233232 (2013)

The first mass measurements of ^{53,54}Ca

Magic neutron number N=32?

 Spectroscopic information available at N=32
 E(2+) energy particularly high in 40,48Ca and 52Ca

A. Huck *et al.*, Phys. Rev. C **31**, 2226–2237 (1985) D. Steppenbeck *et al.*, Nature **502**, 207-210 (2013) DOI/10.1038/nature12522

1: A. T. Gallant *et al.,* Phys. Rev. Lett. **109**, 032506 (2012) 2: M. Wang et al., Chinese Phys. C **36**, 1603 (2012) Mass measurements performed by TITAN¹ show big deviations from values extrapolated in AME2003.

$$S_{2n}(N,Z) = B(N,Z) - B(N-2,Z)$$

ISOLTRAP setup and the calcium measurements

Wienholtz et al., Nature 498, 346 (2013)

ISOLTRAP setup and the calcium measurements

Wienholtz et al., Nature 498, 346 (2013)

ISOLTRAP setup and the calcium measurements 52Ca

20

2: Wienholtz et al., Nature 498, 346-349 (2013) DOI/10.1038/nature12226

MR-ToF mass spectrometer

ISOLTRAP setup and the calcium measurements 53Ca and 54Ca

\\ n-rich Calcium isotopes: ⁵³Ca and ⁵⁴Ca

Poves *et al.*, Nucl. Phys. A **694**, 157 (2001) Honma *et al.*, Eur. Phys. J. A 25, Suppl. 1, 499 (2005)

Honma et al., Eur. Phys. J. A 25, Suppl. 1, 499 (2005) Chabanat et al., Nucl. Phys. A 635, 231 (1998)

Poves *et al.*, Nucl. Phys. A **694**, 157 (2001) Honma *et al.*, Eur. Phys. J. A 25, Suppl. 1, 499 (2005) Chabanat *et al.*, Nucl.Phys. A **635**, 231 (1998) Hagen *et al.*, Phys. Rev. Lett. **109**, 032502 (2012)

J.D. Holt *et al.,* J. Phys. G: Nucl. Part. Phys. **40** 075105 (2013) Wienholtz *et al.,* Nature **498**, 346-349 (2013)

Results

\\ S_{2n} surface including 52 and 53 potassium

Neutron-rich cadmium isotopes

Motivation - rapid neutron capture process

1: M. Hannawald et al., PRC 62, 054301 (2000); 2: I. Dillmann et al., PRL 16, 162503-1 (2003); 3. D.T. Yordanov et al., PRL 110, 192501 (2013); M. Wang et al., CPC 36 1603 (2012);

ISOLTRAP setup and cadmium measurements

ISOLTRAP setup and cadmium measurements

ISOLTRAP setup and cadmium measurements

129Cd – Half life

¹²⁹Cd after 100 revolutions in MR-ToF MS ¹³⁰Cd after 1000 revolutions in MR-ToF MS

- ➤ ≈6300 ions/s from ISOLDE; 1539 ions
- 4 ToF-ICR resonances
 - 1 normal, 3 Ramsey

→ Δm/m≈1.2E-7

- ➤ ≈625 ions/s from ISOLDE; 588ions
- > ¹³⁰Cd/cont. ≈ 0.2; only $R \approx 15$ k needed
- 3 ToF-ICR resonances
 - 1 normal, 2 Ramsey

→∆m/m≈1.6E-7

129Cd, 130Cd – Mass measurement

¹²⁹Cd Ramsey-type resonance 20ms – 160ms – 20ms

- ➤ ≈6300 ions/s from ISOLDE; 1539 ions
- 4 ToF-ICR resonances
 - 1 normal, 3 Ramsey

→ Δm/m≈1.2E-7

¹³⁰Cd after 1000 revolutions in MR-ToF MS

- ➤ ≈625 ions/s from ISOLDE; 588ions
- > ¹³⁰Cd/cont. ≈ 0.2; only $R \approx 15$ k needed
- 3 ToF-ICR resonances
 - 1 normal, 2 Ramsey

→∆m/m≈1.6E-7

129Cd, 130Cd – Mass measurement

¹²⁹Cd Ramsey-type resonance 20ms – 160ms – 20ms

¹³⁰Cd Ramsey-type resonance 10ms – 80ms – 10ms

- ➤ ≈6300 ions/s from ISOLDE; 1539 ions
- 4 ToF-ICR resonances
 - 1 normal, 3 Ramsey

→ Δm/m≈1.2E-7

- ➤ ≈625 ions/s from ISOLDE; 588ions
- > ¹³⁰Cd/cont. ≈ 0.2; only $R \approx 15$ k needed
- 3 ToF-ICR resonances
 - 1 normal, 2 Ramsey

→∆m/m≈1.6E-7

Direct impact:

- Important impact of the neutron separation energy S_n on the predicted r-process abundances.
- Irrespective of model, ^{A>130}Cd isotopes have among the largest impact.
- \approx 0.5 MeV deviations found from AME values and extrapolations (analysis ongoing).

Indirect impact:

The one-neutron shell gap agrees with the picture of a fast reduction (quenching) for Z < 50.

S. Brett et al., Eur. Phys. J. A 48, 184, 2012.

S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 82, 035804, 2010.

P. Möller, J. R. Nix, W. D. Myers, W. J. Swiatecki, ADNDT 59, 185, 1995.

Summary

- Application of the MR-ToF MS as tool for fast ion separation and subsequent Penning trap measurement of 82Zn
- First direct determination of the mass of 53,54Ca
 - Magicity of N=32 established
- Successful mass measurement of the "waiting-point" nucleus
 130Cd as well as 129Cd and 131Cd
 - Found deviation from literature and AME values which will have an impact on the r-process
- Additional successful measurement campaigns on astatine, chromium, strontium and rubidium

Outlook

Thanks to...

M. Rosenbusch, R.N. Wolf, L. Schweikhard, Stefan Kemnitz

P. Ascher, D. Atanasov, Ch. Böhm, Ch. Borgmann, R. B. Cakirli, S. Eliseev, T. Eronen, S. George, D. Kissler, S. Naimi, K. Blaum

D. Beck, F. Herfurth, A. Herlert, E. Minaya-Ramirez, D. Neidherr, Y. Litvinov

M. Kowalska, S. Kreim,

The ISOLDE target team for the beam delivery!

SPONSORED BY THE

ERNST MORITZ ARNDT

199192

CERN

RILIS

UNIVERSITÄT GREIFSWALD

PLANCK-GESELLSCHAFT

J. Stanja, A. Welker, K. Zuber

N. Althubiti, T. Cocolios

M. Breitenfeldt

Thank you for your attention!

Federal Ministry of Education and Research

> Grants No.: 05P12HGCI1 05P12HGFNE

Shell model calculations: Group of A. Schwenk

TECHNISCHE UNIVERSITÄT DARMSTADT http://isoltrap.web.cern.ch wienholtz@uni-greifswald.de

WINDMILL