Underground nuclear astrophysics from the Big Bang to astrophysical novae

International Workshop XLIII on Gross Properties of Nuclei and Nuclear Excitations "Nuclear Structure and Reactions: Weak, Strange and Exotic"

Hirschegg, 13.01.2015

Daniel Bemmerer

Nuclear Astrophysics Virtual Institute

HZDR

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Underground nuclear astrophysics, from the Big Bang to astrophysical novae

- 1. Motivation: The solar abundance problem and solar neutrinos
- 2. Technique: Experiments in underground laboratories
- 3. Applications: Hydrogen burning in stars and in novae Big Bang nucleosynthesis
- 4. The science case for new underground accelerators
- 5. Overground experiments for nuclear astrophysics

Mitglied der Helmholtz-Gemeinschaft

Structure of the Sun red: Observable

- Corona
- Chromosphere
- Photosphere
 Fraunhofer lines
- Convection zone
 p-modes (helioseismology)
- Radiation zone
- Core
 Neutrinos

Mitglied der Helmholtz-Gemeinschaft

3-dimensional models of the photosphere lead to lower derived abundances:

1D: 2.29% (by mass) of the Sun are "metals" (Li...U)

3D: 1.78% (by mass) of the Sun are "metals" (Li...U)

Mitglied der Helmholtz-Gemeinschaft

Data on the Sun (2): Helioseismology

Satellite "SoHo"

(Solar and Heliospheric Observatory)

Fourier transformed spectrum from GOLF instrument on SoHo

Simulated standing waves, p-mode ~3 mHz

Mitglied der Helmholtz-Gemeinschaft

The solar abundance problem:

Contradiction between elemental abundances and helioseismology

Solar models computed with different sets of elemental abundances:

1D: 2.29% (by mass) of the Sun are "metals" (Li...U)

3D: 1.78% (by mass) of the Sun are "metals" (Li...U)

Solar neutrino fluxes: Data and model predictions

Daniel Bemmerer | Undergrou

What drives the uncertainties in the predicted solar neutrino fluxes?

Uncertainty contributed to neutrino flux, in percent

Antonelli et al., 1208.1356

Nuclear reaction rates are the largest contributor to the uncertainty!

Mitglied der Helmholtz-Gemeinschaft

Underground nuclear astrophysics, from the Big Bang to astrophysical novae

- 1. Motivation: The solar abundance problem and solar neutrinos
- 2. Technique: Experiments in underground laboratories
- 3. Applications: Hydrogen burning in stars and in novae Big Bang nucleosynthesis
- 4. The science case for new underground accelerators
- 5. Overground experiments for nuclear astrophysics

Mitglied der Helmholtz-Gemeinschaft

Nuclear reaction cross section σ for low-energy charged particles

Mitglied der Helmholtz-Gemeinschaft

LUNA laboratory at Gran Sasso / Italy today

Access by motorway

Mitglied der Helmholtz-Gemeinschaft

The LUNA 0.4 MV accelerator deep underground

LUNA = Laboratory Underground for Nuclear Astrophysics

- Italy
- Germany
- Hungary
- UK

LUNA approach: Measure nuclear reaction cross sections at or near the relevant energies (= Gamow peak), using

- high beam intensity
- low background
- great patience

Underground nuclear astrophysics, from the Big Bang to astrophysical novae

- 1. Motivation: The solar abundance problem and solar neutrinos
- 2. Technique: Experiments in underground laboratories
- 3. Applications: Hydrogen burning in stars and in novae Big Bang nucleosynthesis
- 4. The science case for new underground accelerators
- 5. Overground experiments for nuclear astrophysics

Mitglied der Helmholtz-Gemeinschaft

³He(α,γ)⁷Be experiment at LUNA (activation and prompt- γ technique)

Mitglied der Helmholtz-Gemeinschaft

³He(α,γ)⁷Be at LUNA, ⁷Be activation spectra

Mitglied der Helmholtz-Gemeinschaft

³He(α,γ)⁷Be reaction, what is needed for even better precision

Jnderground nuclear astrophysics | Hirschegg, 13.01.2015 | http://www.hzdr.de

The Spite abundance plateau and the lithium problem(s)

- Cosmic ⁷Li problem: Less ⁷Li in old stars than predicted.
 ⁷Li production mainly by ³He(α,γ)⁷Be → ⁷Li LUNA data rules out a nuclear solution for the cosmic ⁷Li problem.
- Reported cosmic ⁶Li problem: Much more ⁶Li in some old stars than predicted.
 ⁶Li production mainly by the ²H(α,γ)⁶Li reaction.

Mitglied der Helmholtz-Gemeinschaft

DRESDEN

²H(α,γ)⁶Li, LUNA results for the S factor and the ⁶Li abundance ²H(α,γ)⁶Li S-factor - Phys. Rev. Lett. 113, 042501 (2014)

- First direct data point in the Big Bang energy window
- Determine primordial ${}^{6}Li/{}^{7}Li$ ratio = (1.5± 0.3) * 10⁻⁵ entirely from experimental data
- To be compared to reports of ⁶Li/⁷Li ~ 10⁻²

Mitglied der Helmholtz-Gemeinschaf

$^{14}N(p,\gamma)^{15}O$, bottleneck of the CNO cycle, and ^{15}O neutrinos

Work in progress: high-energy experimental data on ${}^{14}N(p,\gamma){}^{15}O$

Surface-based new data at 10 μA, 3 MV HZDR Tandem accelerator

Mitglied der Helmholtz-Gemeinschaft

Preliminary high-energy experimental data on ${}^{14}N(p,\gamma){}^{15}O$

- Surface-based new data at 10 µA, 3 MV Tandem accelerator
- Link to low-energy LUNA data and study of weak branches still under construction: Greater beam intensity and long (~months) running times needed!

¹³N neutrinos and the ${}^{12}C(p,\gamma){}^{13}N$ reaction

Mitglied der Helmholtz-Gemeinschaft

¹³N neutrinos and the ${}^{12}C(p,\gamma){}^{13}N$ reaction

Run at *E* = 190 keV

E_{nom} = 2480 keV, livetime: 16 h 54 min, Charge: 1.15 C, Target: Ta-TiH2

- Surface-based experiment in inverse kinematics shows no ion-beam induced background.
- Extension to even lower energies requires high ¹²C beam intensity, gas target, and underground site.

Mitglied der Helmholtz-Gemeinschaft

The neon-sodium cycle and the ${}^{22}Ne(p,\gamma){}^{23}Na$ reaction

- Second to the slowest reaction in the Ne-Na cycle of hydrogen burning
- Strong effect on the abundances of ²²Ne and ²³Na
- Possible propagation to heavier nuclides

Mitglied der Helmholtz-Gemeinschaft

$^{22}Ne(p,\gamma)^{23}Na$ phase 1 setup at LUNA

Mitglied der Helmholtz-Gemeinschaft

²²Ne(p, γ)²³Na resonance at E_{res}^{lab} = 189.5 keV

Preliminary!

Mitglied der Helmholtz-Gemeinschaft

Underground nuclear astrophysics, from the Big Bang to astrophysical novae

- 1. Motivation: The solar abundance problem and solar neutrinos
- 2. Technique: Experiments in underground laboratories
- 3. Applications: Hydrogen burning in stars and in novae Big Bang nucleosynthesis
- 4. The science case for new underground accelerators
- 5. Overground experiments for nuclear astrophysics

Mitglied der Helmholtz-Gemeinschaft

Limitations of the existing LUNA 0.4 MV accelerator

- Many reactions cannot be studied with a 0.4 MV accelerator alone.
 - Solar fusion reactions
 - Stellar helium and carbon burning
 - Neutron sources for the astrophysical s-process
- A new, higher-energy underground accelerator is needed!

Mitglied der Helmholtz-Gemeinschaft

The ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction, determining the ${}^{12}C/{}^{16}O$ ratio

Gran Sasso / Italy: LUNA-MV 3.5 MV accelerator

Scientific program:

- Stellar helium burning, including the "Holy Grail of Nuclear Astrophysics" ¹²C(α,γ)¹⁶O
- ¹⁴N(p,γ)¹⁵O for solar fusion
- Neutron source reactions for the astrophysical s-process:
 ¹³C(α,n)¹⁶O and ²²Ne(α,n)²⁵Mg

Italian research ministry approved funding in two parts:

- 2.8 M€ for purchasing a 3.5 MV single-ended accelerator, with radiofrequency ion source (2012).
- 2.5 M€ for beam lines, magnets, instrumentation (2013).
- First beam expected 2018/2019

Mitglied der Helmholtz-Gemeinschaft

Dresden Felsenkeller, below 47 m of rock: Status quo

- γ -counting facility for analytics, established 1982
- Deepest underground γ-counting lab in Germany
- 10 high-purity germanium detectors
- Scientific use by HZDR (Daniel Bemmerer *et al.*) and by TU Dresden (Kai Zuber *et al.*)
- Several active Bachelor + Master + PhD theses using Felsenkeller
- 4 km from TU Dresden, 25 km from HZDR campus
- Why not put an accelerator there?

Slide 33

<image>

Mitglied der Helmholtz-Gemeinschaft

Planned Felsenkeller accelerator, HZDR and TU Dresden

- 12-year old, working 5 MV accelerator
- 250 µA upcharge current (double pellet chains)
- External Cs sputter ion source: 100 µA H⁻ and C⁻
- Work on internal RF ion source for 50 μA He⁺
- Joint effort by TU Dresden (Kai Zuber et al.) and HZDR (Daniel Bemmerer et al.)
- Project is fully funded
- First beam expected early 2016
- Days 1+2: Solar fusion and carbon burning.
- Wide open for international users!

Mitglied der Helmholtz-Gemeinschaft

Underground nuclear astrophysics, from the Big Bang to astrophysical novae

- 1. Motivation: The solar abundance problem and solar neutrinos
- 2. Technique: Experiments in underground laboratories
- 3. Applications: Hydrogen burning in stars and in novae Big Bang nucleosynthesis
- 4. The science case for new underground accelerators
- 5. Overground experiments for nuclear astrophysics

Mitglied der Helmholtz-Gemeinschaft

^{20,21}N Coulomb dissociation at GSI (S393)

Motivation

r-process scenario including light nuclei

Slide 36

Daniel Bemmerer | Underground nuclear astrophysics | Hirschegg, 13.01.2015 | http://www.hzdr.de

Re-instrument scintillator-based neutron detectors with SiPMs?

Mitglied der Helmholtz-Gemeinschaft

LUNA collaboration

Italy	Genova	F. Cavanna, F. Ferraro, P. Corvisiero, P. Prati	
	Gran Sasso	A. Best, A. Boeltzig, A. Formicola, M. Junker	
	Milano	A. Guglielmetti (LUNA spokeswoman), D. Trezzi	
	Napoli	A. di Leva, G. Imbriani, V. Roca, F. Terrasi	
	Padova	C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo	
	Roma	C. Gustavino	
	Teramo	O. Straniero	
	Torino	G. Gervino	
Germany	Bochum	C. Rolfs, F. Strieder, HP. Trautvetter	
	Dresden	M. Anders, D. Bemmerer, T. Szücs, M. Takács	
Hungary	Debrecen	Zs. Fülöp, Gy. Gyürky, E. Somorjai, T. Szücs	
UK	Edinburgh	M. Aliotta, C. Bruno, T. Davinson, D. Scott	

HZDR Detector Technology and Systems group

•	Sun:	¹⁴ N(p,γ) ¹⁵ O	Louis Wagner
		¹² C(p,γ) ¹³ N	Tobias Reinhardt (TU Dresden)
		¹⁵ N(γ,γ) ¹⁵ N	Tamás Szücs
•	AGB, novae:	²² Ne(p,γ) ²³ Na at LUNA	Marcell Takács
•	Supernovae:	⁴⁰ Ca(α,γ) ⁴⁴ Ti	Konrad Schmidt
•	GSI/FAIR work	SiPMs for NeuLAND	Stefan Reinicke
		^{20,21} N(γ,n) ^{20,19} N	Marko Röder (TU Dresden)

Mitglied der Helmholtz-Gemeinschaft

Underground nuclear astrophysics, from the Big Bang to astrophysical novae

- 1. Motivation: The solar abundance problem and solar neutrinos
- 2. Technique: Experiments in underground laboratories
- 3. Applications: Hydrogen burning in stars and in novae Big Bang nucleosynthesis
- 4. The science case for new underground accelerators
- 5. Overground experiments for nuclear astrophysics

Mitglied der Helmholtz-Gemeinschaft