Hirschegg 2015-13 January 2015

Chiral NN + 3N forces in medium mass isotopes

Carlo Barbieri - University of Surrey

Collaborators:
A. Cipollone, CB, P. Navrátil:

Phys. Rev. Lett. 111, 062501 (2013)
arXiv:1412.3002 [nucl-th] (2014)
V. Somà, A. Cipollone, CB, P. Navrátil, T. Duguet: Phys.Rev. C 89, 061301R (2014)

CB, arXiv:1405.0491 [nucl-th] (2014)

Current Status of low-energy nuclear physics

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena

Nature 473, 25 (2011); 486, 509 (2012)

Current Status of low-energy nuclear physics

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena EOS of neutron star matter

I) Understanding the nuclear force QCD-derived; 3-nucleon forces (3NFs) First principle (ab-initio) predictions

III) Interdisciplinary character

Astrophysics
Tests of the standard model Other fermionic systems: ultracold gasses; molecules;

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and energies (E_{m})

Understood for a few stable closed shells:
[CGandirwbr H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and

Particle-vibration
fully characterised only stable isotopes... (!)
so far, fully chatable isotopes...
$52,377(2004)]$

Understood for a few stable closed shells:
[GR, and in Wi H. Dickhoff, Prog. Part. Null. Phys 52, 377 (2004)]
D es SURREY

Reaching medium mass and neutron rich isotopes

\rightarrow Degenerate system (open shells, deformations...)
\rightarrow Hamiltoninan, including three nucleon forces

Ab-Initio SCGF approaches

The FRPA Method in Two Words

Particle vibration coupling is the main cause driving the distribution of particle strength-on both sides of the Fermi surface...

```
CB et al.,
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313 (2009)
```

- A complete expansion requires all types of particle-vibration coupling
...these modes are all resummed exactly and to all orders in a ab-initio many-body expansion.
-The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering

Gorkov and symmetry breaking approaches

V. Somà, CB, T. Duguet, , Phys. Rev. C 89, 024323 (2014)
V. Somà, CB, T. Duguet, Phys. Rev. C 87, 011303R (2013)
V. Somà, T. Duguet, CB, Phys. Rev. C 84, 064317 (2011)
> Ansatz

$$
\ldots \approx E_{0}^{N+2}-E_{0}^{N} \approx E_{0}^{N}-E_{0}^{N-2} \approx \ldots \approx 2 \mu
$$

>Auxiliary many-body state $\left|\Psi_{0}\right\rangle \equiv \sum_{N}^{\text {even }} c_{N}\left|\psi_{0}^{N}\right\rangle$
\longrightarrow Mixes various particle numbers
\longrightarrow Introduce a "grand-canonical" potential $\Omega=H-\mu N$
$\Longrightarrow\left|\Psi_{0}\right\rangle$ minimizes $\Omega_{0}=\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle$ under the constraint $N=\left\langle\Psi_{0}\right| N\left|\Psi_{0}\right\rangle$
$>$ This approach leads to the following Feynman diagrams:

$$
\Sigma_{a b}^{11(2)}(\omega)=\uparrow \omega^{c}
$$

$$
\Sigma_{a b}^{12(1)}=
$$

Carlo Barbieri - 18/11

Truncation scheme:	Dyson formulation (closed shells)	Gorkov formulation (semi-magic)
$1^{\text {st }}$ order:	Hartree-Fock	HF-Bogolioubov
$2^{\text {nd }}$ order:	$2^{\text {nd }}$ order	$2^{\text {nd }}$ order (w/ pairing)
\ldots	\ldots	
$3^{\text {rd }}$ and all-orders sums, P-V coupling:	ADC(3) FRPA	G-ADC(3)

Approaches in GF theory

Adding 3-nucleon forces

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction

pure 3-Body contribution

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

粦 NNN forces can enter diagrams in three different ways:
\rightarrow Define new 1- and 2-body interactions and use only interaction-irreducible diagrams

- Contractions are with fully correlated density matrices (BEYOND a normal ordering...)

Inclusion of NNN forces
 A. Carbone, A. Cipollone, CB, A. Rios, A Polls, arXiv:1309.yyyy

粦 NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to non-contracted 2-Body interaction
pure 3-Body contribution

BEWARE that defining:

and then:

would double count the 1-body term.

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

(a)

(b)
- Third order PT diagrams with 3BFs:

(a)

(b)

(f)

(g)

(n)

(o)

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

mons

(a)

(b)

- Third anderPT diagrams with 3BFs:
(a)

(e)

(f)

(g)

(n)

Ab-initio Nuclear Computation \& BcDor code

BoccaDorata code:
(C. Barbieri 2006-14
V. Somà 2011-14
A. Cipollone 2012-13)

- Provides a C++ class library for handling many-body propagators ($\approx 40,000$ lines, OpenMPI based).
- Allows to solve for nuclear spectral functions, many-body propagators, RPA responses, coupled cluster equations and effective interaction/charges for the shell model.

Code history:

core functions and FRPA shell model charges-interactions (lowest order) new Gorkov formalism for open-shell nuclei (at $2^{\text {nd }}$ order)

Coupled clusters equations
Three-nucleon forces (≈ 50 cores, 35 Gb but on the rise...)

Gorkov at $3^{\text {rd }}$ order (will become massively parallel...)

UNIVERSITY OF
SURREY

Results

Chiral Nuclear forces - SRG evolved

Convergence of s.p. spectra w.r.t. SRG

Cutoff dependence is reduces, indicating good convergence of many-body truncation and many-body forces

NN terms (no induced 3NF) $\leftarrow \rightarrow N N+3 N F$ fully included

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and arXiv:1412.3002 [nucl-th] (2014)

$\rightarrow d_{3 / 2}$ raised by genuine 3NF
\rightarrow cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and arXiv:1412.3002 [nucl-th] (2014)

\rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen
\rightarrow cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

Neutron spectral function of Oxygens

A. Cipollone, CB P. Navrátil, PRC submitted (2014)

Quenching of absolute spectroscopic factors

[CB, Phys. Rev. Lett. 103, 202520 (2009)]

Overall quenching of spectroscopic factors is driven by:
SRC $\quad \rightarrow$ ~10\% part-vibr. coupling \rightarrow dominant "shell-model" \rightarrow in open shell

 2
1.5
1
0.5

ZNN asymmetry dependence of SF's - Theory

Ab -initio calculations explain the Z / N dependence but the effect is much lower than suggested by direct knockout

Effects of continuum become important at the driplines

arXiv:1412.3002 [nucl-th] (2014)
Spectroscopic factor are strongly correlated to p-h gaps:

Single nucleon transfer in the oxygen chain

[F. Flavigny et al, PRL110, 122503 (2013)]
\rightarrow Analysis of ${ }^{14} \mathrm{O}(d, t)^{13} \mathrm{O}$ and ${ }^{14} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)^{13} \mathrm{~N}$ transfer reactions @ SPIRAL

- Overlap functions and strengths from GF
- Rs independent of asymmetry

Calcium isotopic chain

Ab-initio calculation of the whole Ca: induced and full 3NF investigated

\rightarrow induced and full 3NF investigated
\rightarrow genuine (N2LO) 3NF needed to reproduce the energy curvature and $\mathrm{S}_{2 n}$
$\rightarrow \mathrm{N}=20$ and $\mathrm{Z}=20$ gaps overestimated!
\rightarrow Full 3NF give a correct trend but over bind!

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism
UNUNESIITOE

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism
SUNERSEY

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

Lack of deformation due to quenched cross-shell quadrupole excitations
\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism
LuNERSIITOF
SURREY

The sd-pf shell gap

Neutron spectral distributions for ${ }^{48} \mathrm{Ca}$ and ${ }^{56} \mathrm{Ni}$:
$2 N+3 N F$ (induced)

$2 N+3 N F(F U L L)$

- sd-pf separation is overestimated even with leading order N2LO 3NF
- Correct increase of $p_{3 / 2}-f_{7 / 2}$ splitting (see Zuker 2003)

CB et al., arXiv:1211.3315 [nucl-th]

	2NF only	2+3NF(ind.)	2+3NF(full)	Experiment
${ }^{16} \mathrm{O}:$	2.10	2.41	2.38	$2.718 \pm 0.210[19]$
${ }^{44} \mathrm{Ca}:$	2.48	2.93	2.94	$3.520 \pm 0.005[20]$

UNIVERSITY OF
SURREY

Ca and Ni isotopic chains

\rightarrow Large J in free space SRG matter (must pay attention to its convergence)
\rightarrow Overall conclusions regarding over binding and $\mathrm{S}_{2 n}$ remain but details change

Ca and Ni isotopic chains

\rightarrow Large J in free space SRG matter (must pay attention to its convergence)
\rightarrow Overall conclusions regarding over binding and $\mathrm{S}_{2 n}$ remain but details change

Two-neutron separation energies for meutron rich K isotopes

\rightarrow Error bar in predictions are from extrapolating the many-body expansion to convergence of the model space.

UNURSEEY
SURE

Inversion of $d_{3 / 2}-s_{1 / 2}$ at $N=28$

FIG. 1. (color online) Experimental energies for $1 / 2^{+}$and

2522
$3 / 2^{+}$states in odd-A K isotopes. Inversion of the nuclear spin
is obtained in ${ }^{47,49} \mathrm{~K}$ and reinversion back in ${ }^{51} \mathrm{~K}$. Results are
J. Papuga, et al., PRL 110, 172503 (2013); PRC (2014), submitted.

```
1371
```

 -980

Change in separation described by chiral NN+3NF:

ESPE: "centroid" energies
SURREY

Conclusions

- What to did we learn about realistic chiral forces from ab-initio calculations?
\rightarrow Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
\rightarrow Experimental binding is predicted accurately up to the lower sd shell (A~30) but deteriorates for medium mass isotopes (Ca and above) with roughly 1 MeV/A over binding.
\rightarrow This hints to the need of more repulsion in future generations of chiral realistic forces.

Thank you for your attention!!!!

Collaborators

SUNRRSEY

\qquad cea

TRIUMF
(U) $\mathrm{B}=$

B Universitat de Barcelona
Washington
University in St.Louis
AN Center for Malecular Modeling

A. Cipollone, A. Rios
V. Somà, T. Duguet
A. Carbone
P. Navratil
A. Polls
W.H. Dickhoff, S. Waldecker
D. Van Neck, M. Degroote
M. Hjorth-Jensen

