

 $p_{1/2}, t_{7/2}$

I thing

p_{3/2}

5 10 15

d_{3/2}

Chiral NN + 3N forces in medium mass isotopes

Carlo Barbieri — University of Surrey

Collaborators:

A. Cipollone, CB, P. Navrátil:

V. Somà, A. Cipollone, CB,

P. Navrátil, T. Duguet:

Phys. Rev. Lett. **111**, 062501 (2013) arXiv:1412.3002 [nucl-th] (2014)

-25 -20 -15 -10 -5 / 0 E_F

p_{3/2} p_{1/2}

Phys. Rev. C 89,

S⁽ⁿ⁾₂₄₀(r,ω) [fm⁻³MeV⁻¹]

1.5

0.5

-30

061301R (2014)

CB, arXiv:1405.0491 [nucl-th] (2014)

Current Status of low-energy nuclear physics

Composite system of interacting fermions

Binding and limits of stability Coexistence of individual and collective behaviors Self-organization and emerging phenomena EOS of neutron star matter Experimental programs RIKEN, FAIR, FRIB

~3,200 known isotopes

Extreme mass

process path...

- ~7,000 predicted to exist
- Correlation characterised in full for ~283 stable

Nature 473, 25 (2011); 486, 509 (2012)

Current Status of low-energy nuclear physics

Composite system of interacting fermions

Binding and limits of stability Coexistence of individual and collective behaviors Self-organization and emerging phenomena EOS of neutron star matter

Extreme neutron-protos

Experimental programs RIKEN, FAIR, FRIB

Extreme mass

II) Nuclear correlations Fully known for stable isotopes [C. Barbieri and W. H. Dickhoff, Prog. Part. Nucl. Phys **52**, 377 (2004)]

Unst Neutron-rich nuclei; Shell evolution (far from stability)

I) Understanding the nuclear force QCD-derived; 3-nucleon forces (3NFs) First principle (ab-initio) predictions

protons

Be

Li He

neutrons

UNIVERSITY OF

III) Interdisciplinary character Astrophysics Tests of the standard model Other fermionic systems: ultracold gasses; molecules;

Concept of correlations

Understood for a few stable closed shells: [CBugedow H. Dickhoff, Prog. Part. Nucl. Phys **52**, 377 (2004)] SURREY

Carlo Barbieri – 4/11

Concept of correlations

Carlo Barbieri – 4/11

Reaching medium mass and neutron rich isotopes

Degenerate system (open shells, deformations...)

Hamiltoninan, including three nucleon forces

Ab-Initio SCGF approaches

The FRPA Method in Two Words

Particle vibration coupling is the main cause driving the distribution of particle strength—on both sides of the Fermi surface...

(ph)

(ph)

O^{II}(pp/hh)

= hole

R^{(2p1}

= particle

CB et al., Phys. Rev. C**63**, 034313 (2001) Phys. Rev. A**76**, 052503 (2007) Phys. Rev. C**79**, 064313 (2009)

•A complete expansion requires <u>all</u> <u>types</u> of particle-vibration coupling

Hartree Fock

...these modes are all resummed exactly and to all orders in a *ab-initio* many-body expansion.

•The Self-energy $\Sigma^*(\omega)$ yields both single-particle states and scattering

JNIVERSITY OF

Carlo Barbieri – 17/11

Gorkov and symmetry breaking approaches

V. Somà, CB, T. Duguet, , Phys. Rev. C 89, 024323 (2014)
V. Somà, CB, T. Duguet, Phys. Rev. C 87, 011303R (2013)
V. Somà, T. Duguet, CB, Phys. Rev. C 84, 064317 (2011)

> Ansatz
$$(... \approx E_0^{N+2} - E_0^N \approx E_0^N - E_0^{N-2} \approx ... \approx 2\mu)$$

> Auxiliary many-body state $|\Psi_0
angle \equiv \sum_N^{\text{even}} c_N |\psi_0^N
angle$

Mixes various particle numbers

ightarrow Introduce a "grand-canonical" potential $\ \ \Omega = H \! - \! \mu N$

 $\implies |\Psi_0\rangle$ minimizes $\Omega_0 = \langle \Psi_0 | \Omega | \Psi_0 \rangle$ under the constraint $N = \langle \Psi_0 | N | \Psi_0 \rangle$

This approach leads to the following Feynman diagrams:

 $\Sigma_{ab}^{11\,(1)} = \qquad \stackrel{a}{\overset{o}{b}} - - - \stackrel{c}{\overset{o}{d}} \bigcirc \downarrow \omega'$ $\Sigma_{ab}^{12\,(1)} = \qquad \stackrel{a}{\overset{c}{}} - - - \stackrel{\overline{b}}{\overset{\overline{b}}{\overline{d}}}$ UNIVERSITY OF

Carlo Barbieri – 18/11

Truncation scheme:	Dyson formulation (closed shells)	Gorkov formulation (semi-magic)		
1 st order:	Hartree-Fock	HF-Bogolioubov		
2 nd order:	2 nd order	2 nd order (w/ pairing)		
 3 rd and all-orders sums, P-V coupling:	ADC(3) FRPA etc	G-ADC(3) work in progress		

Adding 3-nucleon forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

* NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to <u>non-contracted</u> 2-Body interaction

pure 3-Body contribution

- Contractions are with <u>fully correlated density</u> <u>matrices</u> (BEYOND a normal ordering...)

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

* NNN forces can enter diagrams in three different ways:

→ Define new 1- and 2-body interactions and use <u>only</u> interaction-irreducible diagrams

 Contractions are with <u>fully correlated density matrices</u> (BEYOND a normal ordering...)

* NNN forces can enter diagrams in three different ways:

Correction to external 1-Body interaction

Correction to <u>non-contracted</u> 2-Body interaction

BEWARE that defining:

would *double count* the 1-body term.

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

- Third order PT diagrams with 3BFs:

FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3^{rd} -order in perturbative expansion (7), making use of the effective hamiltonian of Eq. (9).

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

- Third order PT diagrams with 3BFs: (0)(n)

FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3^{rd} -order in perturbative expansion (7), making use of the effective hamiltonian of Eq. (9).

Ab-initio Nuclear Computation & BcDor code

Chiral Nuclear forces - SRG evolved

Convergence of s.p. spectra w.r.t. SRG

Cutoff dependence is reduces, indicating good convergence of many-body truncation and many-body forces

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. **111**, 062501 (2013) *and* arXiv:1412.3002 [nucl-th] (2014)

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. **111**, 062501 (2013) and arXiv:1412.3002 [nucl-th] (2014)

 \rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen

→ cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

UNIVERSITY OF N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm⁻¹) N2LO (Λ = 400Mev/c) chiral 3N interaction evolved (2.0fm⁻¹)

Neutron spectral function of Oxygens

Quenching of absolute spectroscopic factors

Z/N asymmetry dependence of SFs - Theory

Ab-initio calculations explain the Z/N dependence but the effect is much lower than suggested by direct knockout

Effects of continuum become important at the driplines

Single nucleon transfer in the oxygen chain

[F. Flavigny et al, PRL110, 122503 (2013)]

\rightarrow Analysis of ¹⁴O(d,t)¹³O and ¹⁴O(d,³He)¹³N transfer reactions @ SPIRAL

Reaction	<i>E</i> * (MeV)	J^{π}	R ^{HFB} (fm)	<i>r</i> ₀ (fm)	$C^2 S_{exp}$ (WS)	$\frac{C^2 S_{\rm th}}{0p + 2\hbar\omega}$	R _s (WS)	$C^2 S_{exp}$ (SCGF)	$C^2 S_{\rm th}$ (SCGF)	R _s (SCGF)
$^{14}O(d, t)$ ^{13}O	0.00	3/2-	2.69	1.40	1.69 (17)(20)	3.15	0.54(5)(6)	1.89(19)(22)	3.17	0.60(6)(7)
14 O (<i>d</i> , 3 He) 13 N	0.00	$1/2^{-}$	3.03	1.23	1.14(16)(15)	1.55	0.73(10)(10)	1.58(22)(2)	1.58	1.00(14)(1)
	3.50	$3/2^{-}$	2.77	1.12	0.94(19)(7)	1.90	0.49(10)(4)	1.00(20)(1)	1.90	0.53(10)(1)
16 O (<i>d</i> , <i>t</i>) 15 O	0.00	$1/2^{-}$	2.91	1.46	0.91(9)(8)	1.54	0.59(6)(5)	0.96(10)(7)	1.73	0.55(6)(4)
16 O (<i>d</i> , 3 He) 15 N [19,20]	0.00	$1/2^{-}$	2.95	1.46	0.93(9)(9)	1.54	0.60(6)(6)	1.25(12)(5)	1.74	0.72(7)(3)
	6.32	$3/2^{-}$	2.80	1.31	1.83(18)(24)	3.07	0.60(6)(8)	2.24(22)(10)	3.45	0.65(6)(3)
18 O (<i>d</i> , 3 He) 17 N [21]	0.00	$1/2^{-}$	2.91	1.46	0.92(9)(12)	1.58	0.58(6)(10)			

- Overlap functions and strengths from GF

- Rs independent of asymmetry

Calcium isotopic chain

Ab-initio calculation of the whole Ca: induced and full 3NF investigated

→ induced and full 3NF investigated

- \rightarrow genuine (N2LO) 3NF needed to reproduce the energy curvature and S_{2n}
- \rightarrow N=20 and Z=20 gaps overestimated!

UNIVERSITY OF

→ Full 3NF give a correct trend but over bind!

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral NN+3NF forces:

UNIVERSITY OF

→ First ab-initio calculation over a contiguous portion of the nuclear chart—open shells are now possible through the Gorkov-GF formalism

Two-neutron separation energies predicted by chiral NN+3NF forces:

→ First ab-initio calculation over a contiguous portion of the nuclear chart—open shells are now possible through the Gorkov-GF formalism

UNIVERSITY OF

Two-neutron separation energies predicted by chiral NN+3NF forces:

→ First ab-initio calculation over a contiguous portion of the nuclear chart—open shells are now possible through the Gorkov-GF formalism UNIVERSITY OF

Two-neutron separation energies predicted by chiral NN+3NF forces:

Lack of deformation due to quenched cross-shell quadrupole excitations

→ First ab-initio calculation over a contiguous portion of the nuclear chart—open shells are now possible through the Gorkov-GF formalism

The sd-pf shell gap

Neutron spectral distributions for ⁴⁸Ca and ⁵⁶Ni:

- sd-pf separation is overestimated <u>even</u> with leading order N2LO 3NF

- Correct increase of *p*_{3/2}-*f*_{7/2} splitting (see Zuker 2003)

		2NF only	2+3NF(ind.)	2+3NF(full)	Experiment
	¹⁶ O:	2.10	2.41	2.38	2.718±0.210 [19]
CB <i>et al.</i> , arXiv:1211.3315 [nucl-th]	⁴⁴ Ca:	2.48	2.93	2.94	3.520±0.005 [20]

Ca and Ni isotopic chains

→ Large J in free space SRG matter (must pay attention to its convergence) → Overall conclusions regarding over binding and S_{2n} remain but details change

IM-SRG results from H. Hergert

Ca and Ni isotopic chains

→ Large J in free space SRG matter (must pay attention to its convergence) → Overall conclusions regarding over binding and S_{2n} remain but details change

Two-neutron separation energies for neutron rich K isotopes

Inversion of $d_{3/2}$ — $s_{1/2}$ at N=28

FIG. 1. (color online) Experimental energies for $1/2^+$ and $3/2^+$ states in odd-A K isotopes. Inversion of the nuclear spin is obtained in 47,49 K and reinversion back in 51 K. Results are

J. Papuga, et al., PRL 110, 172503 (2013); PRC (2014), submitted.

^AK isotopes Laser spectroscopy @ ISOLDE

Change in separation described by chiral NN+3NF:

Conclusions

- What to did we learn about realistic chiral forces from ab-initio calculations?
 - → Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
 - → Experimental binding is predicted accurately up to the lower sd shell (A≈30) but deteriorates for medium mass isotopes (Ca and above) with roughly 1 MeV/A over binding.
 - → This hints to the need of more repulsion in future generations of chiral realistic forces.

Thank you for your attention!!!

enerale atomique • enerales atlematives TECHNISCHE UNIVERSITÄT DARMSTADT

A. Cipollone, A. Rios

- V. Somà, T. Duguet
- A. Carbone
- P. Navratil
- A. Polls
- W.H. Dickhoff, S. Waldecker
- D. Van Neck, M. Degroote

M. Hjorth-Jensen