

Modification of hadron properties in compressed nuclear matter with FOPI

Introduction

Introduction

- Motivation: Chiral Symmetry breaking and restoration.
- Results from Heavy Ion Run: Ni+Ni @1.91 AGeV

 \rightarrow Flow of charged kaons.

• Results from π^- -induced reactions: π^- +C, Pb @1.15 GeV/c and @1.7 GeV/c

 \rightarrow 'momentum ratios'.

Chiral Symmetry Breaking

Gel-Mann-Oakes-Renner relation:

$$m_{\pi}^{2} f_{\pi}^{2} = -\frac{1}{2} (m_{u} + m_{d}) \langle \bar{u}u + \bar{d}d \rangle + \mathcal{O}(m_{u}^{2})$$

$$m_{K}^{2} f_{K}^{2} = -\frac{1}{2} (m_{u} + m_{s}) \langle \bar{u}u + \bar{s}s \rangle + \mathcal{O}(m_{s}^{2})$$

$$\uparrow \qquad \uparrow$$
explicit- spontaneous symmetry breaking

Modified properties of hadrons in dense baryonic matter?

Kaons in Medium

Dispersion relation in the mean-field approximation:

$$\omega_{K^{\pm}}^{2}(p,\rho_{N}) = m_{K}^{2} + p^{2} - \frac{\Sigma_{KN}}{f^{2}}\rho_{S} \pm \frac{3}{4}\frac{\omega}{f^{2}}\rho_{N}$$
$$= (U_{K^{\pm}}(p,\rho_{N}) + \sqrt{m_{K}^{2} + p^{2}})^{2}$$

Measurements in HI

Heavy ion collisions at SIS18 energies:

- Compression: ρ =2-3 ρ_0
- $\bullet~{\rm Heating:}$ \sim 100 MeV
- Pion-baryon ratio: 1:10
- $\bullet\,$ Strangeness production at threshold $\rightarrow\,$ in-medium effects

'Trivial' in-medium effects:

- Fermi motion
- Pauli blocking
- Collisional broadening

'Non-trivial' in-medium effects:

- Partial restoration of chiral symmetry
- Meson-baryon coupling/resonances
- Bound states

Expected influence on production and propagation:

- Production cross section
- Phase space distribution
- Effective mass...

Kaon Flow

Anisotropies of the azimuthal emission expressed by a Fourier series: $rac{dN}{d\omega} \propto (1+2v_1\; cos(arphi)+2v_2\; cos(2arphi)+...) \qquad arphi$ with respect to RP Directed Flow: $v_1 = \langle \cos \varphi \rangle = \langle p_x / p_t \rangle$ Phys. Rev. C 90, 025210 **5**_{0.2} • K⁺ • K ⊾ p • System: Ni+Ni @ 1.93 AGeV Centrality: 60 % σ_{geo}, HSD w/wo i.e. $b_{geo} < 7$ fm -0.2 IQMD w/wo -1 -0.5 0 -1 -0.5 0 -1 -0.5 0 У₍₀₎ У₍₀₎ У₍₀₎

Assumed potentials @ p=0 and ρ_0 (linear density dependence):

HSD & IQMD: $U_{K^+N} = 20 \pm 5$ MeV $U_{K^-N} = -50 \pm 5$ MeV

HSD(E. Bratkovskaya; W. Cassing): Kaons in-medium described by chiral perturbation theory; Antikaons: chiral perturbation theory with G-Matrix approach; IQMD (C.Hartnack): Kaons and Antikaons in-medium described by relativistic mean-field model based on chiral SU(3) model;

Kaon Flow: p_t dependence

Consider 'hidden' dependencies on p_t and centrality:

Peripheral: $3 \text{fm} < b_{geo} < 7 \text{fm}$; Central: $b_{geo} < 3 \text{fm}$

Pion Induced Reactions

In pion-induced reactions in-medium effects can be studied at normal nuclear matter density:

Predicted reduction of $\langle ar{q}q
angle \sim$ 30 %

Our observable: 'The Momentum Ratio'

The Momentum Ratio

Note: For K^- and Λ Strong effects from elastic and inelastic scattering expected!

Measurements of the Momentum Ratio

FOPI: π +A \rightarrow K⁰+X @ 1.15 GeV (M. Benabderrahmane PRL 102(2009)) ANKE: p+A \rightarrow K⁺+X @ 2.5 GeV (M. Bueschner, EPJ, A22, 301(2004))

- Without potential the ratio at small momenta is not reduced → (multiple) scattering
- K⁺ feel additionally the Coulomb-potential

- M.L. Benabderrahmane Phys. Rev. Lett. 102 (2009) 182501 २((do/dp)_{pb}/(do/dp)_C) DATA FOPI K⁰(π'+A) DATA ANKE K*(p+A) 18 HSD (U=0 MeV) 16 HSD (U=20 MeV) 14 HSD (U=10.30 MeV 12 10 2 p (GeV/c)
- K_S^0 measurement favors U($K^+N @ \rho = \rho_0$) =20 MeV with and without transport models!

Measurements of Momentum Spectra

Experiment:

 π^- + ${}^{12}_6$ C and ${}^{208}_{82}$ Pb targets

Beam kinetic energy: $E_{kin} = 1.57 \text{ GeV} \Rightarrow \pi^- p \quad \sqrt{s} = 1.96 \text{ GeV},$

i.e. above the threshold for $\pi^- + p \to K^+ + K^- + n$ but also $\pi^- + p \to \phi + n$

Observable:

'Momentum Distribution Ratio' : $\Rightarrow (dN/dp)_{Pb}/(dN/dp)_C$

13

Momentum Ratios of K^-

- Direct measurement of K^- mesons down to $p_{lab} = 0.1$ GeV/c C: $\sim 450 \ K^-$ candidates , S/B >5 ; Pb: $\sim 230 \ K^-$ candidates , S/B >3;
- Strong absorption & K⁻ originating from decays: Number of primary K⁻ not clear...

Conclusion & Outlook

- For kaons containing an \bar{s} -quark(K^+ , K^0) all measurement support the existence of $U(p, \rho)$.
- First measurement of directed (v₁) flow done with FOPI. Results show a much weaker flow signature than anticipated.
- For kaons containing an *s*-quark $(K^-, \overline{K^0})$ measurement are challenging and transport modeling needs to be refined.
- Simpler system like created in pion induced reaction can help understanding of kaon dynamics in medium. → Possible impact for transport calculations.
- Analysis supplemented by another strange particles: K_S^0 , ϕ , Λ .

E (0) 2

Acknowledgment

Sincerely yours, the FOPI Collaboration!

THU Beijing - NIPNE Bucharest - KFKI RMKI Budapest -LPC Clermont-Ferrand - GSI Darmstadt -Helmholtz-Zentrum Dresden-Rossendorf - Universität Heidelberg - IMP Lanzhou - ITEP Moscow -KI Moscow - Technische Universität München - Korea University Seoul - University of Split - IPHC Strasbourg - SMI Vienna - University of Warsaw - RBI Zagreb

Hirschegg 2015

V.Zinyuk@gsi.de

Grateful Acknowledgment to the FOPI Collaboration!

Anton Andronic⁵, Ralf Averbeck⁵, Valerie Barret⁴, Zoran Basrak¹⁷, Nicole Bastid⁴, Mohammed Lotfi Benabderrahmanec⁷, Martin Berger¹¹, Paul Bühler¹⁵, Roman Čaplar¹⁷, Ivan Careviči¹³, Michael Cargnelli¹⁵, Olga Cherviakova¹⁵, Mircea Ciobanu⁵, Philippe Crochet⁴, Ingo Deppner⁷, Pascal Dupieux⁴, Mile Dželalija¹³, Laura Fabbietti¹¹, Arnaud Le Fèvre⁵, Zoltan Fodor³, Jochen Frühauf⁷, Piotr Gasik¹⁶, Igor Gašparić¹⁷, Yuri Grishkin⁹, Olaf Hartmann¹⁵, Norbert Herrmann⁷, Klaus Dieter Hildenbrand⁵, Byungsik Hong¹², Tae Im Kang⁷, Jozsef Kecskemeti³, Young Jin Kim⁵, Paul Kienle¹⁵, Marek Kirejczyk¹⁵, Mladen Kiš^{5,17}, Roland Kotte⁶, Piotr Koczon⁵, Alexander Lebedev⁹, Yvonne Leifels⁵, Pierre-Alain Loizeau⁷, Xavier Lopez⁴, Vladislav Manko¹⁰, Johann Marton¹⁵, Tomasz Matulewicz¹⁵, Markus Merschmeyer⁷, Robert Münzer¹¹, Mihai Petrovic¹², Krzysztof Piasecki¹⁵, Dominik Pleiner¹¹, Fouad Rami¹⁴, Willbrord Reisdorf⁶, Min Sang Ryu¹², Andreas Schützuf⁵, Zoltan Seres³, Brunon Sikora¹⁶, Kwang Souk Sim¹², Victor Simion², Krystyna Siwek-Wilczyńska¹⁶, Vladimir Smolyankin⁹, Ken Suzuki¹⁵, Zi Gang Xiao¹, Hu Shan Xu⁸, Igor Yushmanov¹⁰, Xue Ying Zhang⁸, Ya Peng Zhang⁷, Alexander Zhilin⁹, Johann Zmeskal¹⁵, Victoria Zinyuk⁷

¹THU Beijing - ²NIPNE Bucharest - ³KFKI RMKI Budapest - ⁴LPC Clermont-Ferrand - ⁵GSI Darmstadt - ⁶Helmholtz-Zentrum Dresden-Rossendorf - ⁷Universität Heidelberg - ⁸IMP Lanzhou -⁹ITEP Moscow - ¹⁰KI Moscow - ¹¹Technische Universität München - ¹²Korea University Seoul -¹³University of Spilt - ¹⁴IPHC Strasbourg - ¹⁵SMI Vienna - ¹⁰University of Warsaw - ¹⁷RBI Zagreb

Backup

• The KN -potential	
• S325 Kaon PID • PS + S/B+Yield	
• GEM TPC • TPC • Mu TPC • GEM	
• Kaon Flow in S325 $\kappa^{+/-} v_{1/2} v_{5} y_{0}$	
$\blacktriangleright K^+ v_{1/2} v_{5 y_0}$	
→ K ⁻ v _{1/2} vs y ₀	
• Standard flow analysis method	
• K^+ flow in central collison, Crochet	
• PID with FOPI	
• Reconstructed Kaon Spectra	
• The detector • Detector	
• FOPI Phase III	
• The S339 Experiment	
• Last day of FOPI	V

Dismantling of FOPI

The FOPI Detector: 1991 - 2013

The FOPI Detector 2009

FOPI - Phase II

PID with FOPI

C - target

PID of kaons:

Reconstructed Kaon Spectra

Bin by bin mass reconstruction and background evaluation.

FOPI 2011

FOPI - Phase III

GEM TPC upgrade for FOPI

- $\bullet~$ Vertex resolution: \sim 1 mm in X, Y and Z
- Larger geometrical acceptance for:

 K_S^0 and Λ

- Improved resolution of secondary vertices (min factor 10)
- First standalone TPC to be used for physics

The S339 Experiment

- New experiment was performed in August 2011: $\pi^- + {}^{12}_{6}$ C, ${}^{63}_{29}$ Cu and ${}^{208}_{82}$ Pb targets
- Pion beam intensity: ca.9000/s
- Beam time: 290 h
- Acquired statistics:

Target	events			
С	5.47	\times	10 ⁶	
Cu	2.56	\times	10 ⁶	
Pb	5.58	\times	10 ⁶	

 $\bullet~$ Beam momentum: 1.7 $\pm~$ 0.03 GeV/c

Beam kinetic energy:
$$E_{kin} = 1.57 \text{ GeV}$$

 $\Rightarrow \pi^- p \quad \sqrt{s} = 2.02 \text{ GeV},$

i.e. above the threshold for $\pi^- + p \rightarrow K^+ + K^- + n$ but also $\pi^- + p \rightarrow \phi + n$

Experimental knowledge about the KN -potential

	U(K ⁺ N)[MeV]	U(K ⁻ N)[MeV]			
observable	$ 0 \ \rho = \rho_0 $	$ 0 \ \rho = \rho_0 $	measured by		
charged kaons:					
K^+ yield (cent)	model-dep.	-	FOPI(1997)		
K^+ sideflow, v_1 (cent)	20 (HSD)	_	FOPI(2000)		
${\cal K}^\pm$ v_1 (per)	20 (IQMD)	- 40 (IQMD)	FOPI(these data)		
	0 (HSD)	- 25 (HSD)	FOPI(these data)		
K^-/K^+ -ratio	30 (RBUU)	- <mark>70</mark> (RBUU)	FOPI(2000)		
K ⁺ - ratio heavy/light sys.*	20 (HSD)		ANKE(2004)		
neutral kaons:					
K_S^0 - p_t spectra	40 (IQMD)	-	HADES(2010)		
K_S^0 - yield	0 (IQMD)	-	FOPI(2004)		
K_S^0 - inverse slope	20 (IQMD)	-	FOPI(2004)		
K ⁰ _S - ratio heavy/light sys.*	20 (HSD)	-	FOPI(2009)		
* elementary reactions					
\rightarrow Evidence for KN-potential, but no definite conclusion on the \mathcal{L}					

strength possible! • Back

Kaon Phase Space

Time Projection Chamber

Gas Electron Multiplier

Back

Kaon Flow

Anisotropies of the azimuthal emission expressed by a Fourier series: $\frac{dN}{d\varphi} \propto (1 + 2v_1 \cos(\varphi) + 2v_2 \cos(2\varphi) + ...) \qquad \varphi \text{ with respect to RP}$ Directed Flow: Elliptic Flow:

K^+ Flow in HSD and IQMD

Transport calculations*:

 HSD(E. Bratkovskaya; W. Cassing): Kaons in-medium described by chiral perturbation theory;

 $U_{K^+N}(
ho_0, p=0)=\mathbf{20}\,\,\mathbf{MeV}$

 IQMD (C.Hartnack): K^{+/0} in-medium described by relativistic mean-field model based on chiral SU(3) model;

 $U_{K^+N}(
ho_0, p=0)=\mathbf{20}\,\,\mathbf{MeV}$

Kaon Flow: p_t dependence

Consider 'hidden' dependencies on p_t and centrality:

Peripheral: $3 \text{fm} < b_{geo} < 7 \text{fm}$; Central: $b_{geo} < 3 \text{fm}$ Back

K^- Flow in HSD and IQMD

Transport calculations:

 HSD(E. Bratkovskaya; W. Cassing): Antikaons in-medium described by chiral perturbation theory with G-Matrix approach;

$$U_{K^-N}(
ho_0, p=0)=$$
 -50 MeV

• *IQMD* (*C.Hartnack*): Antikaons in-medium described by relativistic mean-field model based on chiral SU(3) model;

$$U_{K^-N}(
ho_0, p=0) = -45$$
 MeV

Note: FOPI measurements are compatible with the KaoS measurement (within errors), however no evidence for in-plane emission of K^- -mesons.

Confirmation of published conclusions

• Conclusion: In central collisions the K^+ -flow pattern is described by HSD with 20(\pm 5) MeV K^+N -potential

Standard flow analysis method

- **Reaction Plane determination:** P. Danielewicz and G. Odyniec, Phys. Lett. 157B, 146 (1985)
- Correction due to the reaction plane: Ollitrault correction J.Y. Ollitrault, Nucl. Phys. A638, 195C (1998) • Back

