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 Process mediated by the weak interaction which occurs in those even-even nuclei 
where the single beta decay is energetically forbidden.   

Neutrinoless double beta decay
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Introduction
Nuclear weak currents

Application to GT and 0⌫�� decays
Summary and Outlook

Weak decays in nuclei
Chiral EFT

Double beta decay: origin

Double beta decay only appears when single-� decay
is energetically forbidden or hindered by large J difference
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• Violates the leptonic number conservation

• Neutrinos are massive Majorana particles 

• Mass hierarchy of neutrinos

• Experimentally not observed (T1/2 >1025 y)

• Beyond the Standard Model

• Most plausible mechanism: exchange of light 
Majorana neutrinos

Nuclear Matrix Element

Neutrinoless double beta decay

Phys. Rev. C 85, 034316 (2012). 


Phys. Rev. C 88, 037303 (2013). Phase space factor
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Double beta decay

Double beta decay is a second-order
process which appears when single-�
decay is energetically forbidden or
hindered by large �J
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K. Zuber 

KamLAND - Zen 

Using 400 kg of Xe (91.7% enriched in Xe-136) 

Upgrade to 1 ton enriched Xe planned in 2014 

A Gando et al., PRC 85,045504 (2012)  

T1/2  > 1.9  x 1025 years (90%CL) 
A. Gando, arXiv:1211.3863 

Only lower limits to the half-lives have 
been measured so far

• KamLAND-Zen, 370 kg (136Xe)

• T1/2 > 1.9 x 1025 yr (90% C.L.)

PRL 110, 062502 (2013)

Current experimental status
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Only lower limits to the half-lives have 
been measured so far

background counts. No excess of events beyond the
expected background is observed in any of the three data
sets. This interpretation is strengthened by the pulse shape
analysis. Of the six events from the semicoaxial detectors,
three are classified as SSE by ANN, consistent with the
expectation. Five of the six events have the same classifi-
cation by at least one other PSD method. The event in the
BEGe data set is rejected by the A=E cut. No events remain
within Q!! ! "E after PSD. All results quoted in the

following are obtained with PSD.
To derive the signal strengthN0# and a frequentist cover-

age interval, a profile likelihood fit of the three data sets is
performed. The fitted function consists of a constant term
for the background and a Gaussian peak for the signal with
mean at Q!! and standard deviation "E. The fit has four

free parameters: the backgrounds of the three data sets and
1=T0#

1=2, which relates to the peak integral by Eq. (1). The

likelihood ratio is only evaluated for the physically allowed
region T0#

1=2 > 0. It was verified that the method has always

sufficient coverage. The systematic uncertainties due to the
detector parameters, selection efficiency, energy resolu-
tion, and energy scale are folded in with a Monte Carlo
approach, which takes correlations into account. The best
fit value is N0# ¼ 0, namely no excess of signal events
above the background. The limit on the half-life is

T0#
1=2 > 2:1# 1025 yr ð90%C:L:Þ; (3)

including the systematic uncertainty. The limit on the half-
life corresponds to N0# < 3:5 counts. The systematic
uncertainties weaken the limit by about 1.5%. Given the
background levels and the efficiencies of Table I, the
median sensitivity for the 90% C.L. limit is 2:4# 1025 yr.
A Bayesian calculation [24] was also performed with the

same fit described above. A flat prior distribution is taken
for 1=T0#

1=2 between 0 and 10
&24 yr&1. The toolkit BAT [25]

is used to perform the combined analysis on the data sets
and to extract the posterior distribution for T0#

1=2 after

marginalization over all nuisance parameters. The best fit
is again N0# ¼ 0 and the 90% credible interval is T0#

1=2 >

1:9# 1025 yr (with folded systematic uncertainties). The
corresponding median sensitivity is T0#

1=2 > 2:0# 1025 yr.

Discussion.—The GERDA data show no indication of a
peak at Q!!, i.e., the claim for the observation of 0#!!
decay in 76Ge is not supported. Taking T0#

1=2 from Ref. [11]

at its face value, 5:9! 1:4 decays are expected (see the
note in Ref. [26]) in !E ¼ !2"E and 2:0! 0:3 back-
ground events after the PSD cuts, as shown in Fig. 1.
This can be compared with three events detected, none
of them within Q!! ! "E. The model (H1), which
includes the 0#!! signal calculated above, gives in
fact a worse fit to the data than the background-only
model (H0): the Bayes factor, namely the ratio of the
probabilities of the two models, is PðH1Þ=PðH0Þ ¼
0:024. Assuming the model H1, the probability to obtain
N0# ¼ 0 as the best fit from the profile likelihood analysis
is PðN0# ¼ 0jH1Þ ¼ 0:01.

TABLE II. List of all events within Q!! ! 5 keV.

Data
set Detector

Energy
(keV) Date PSD passed

Golden ANG 5 2041.8 18 Nov 2011 22:52 no
Silver ANG 5 2036.9 23 Jun 2012 23:02 yes
Golden RG 2 2041.3 16 Dec 2012 00:09 yes
BEGe GD32B 2036.6 28 Dec 2012 09:50 no
Golden RG 1 2035.5 29 Jan 2013 03:35 yes
Golden ANG 3 2037.4 02 Mar 2013 08:08 no
Golden RG 1 2041.7 27 Apr 2013 22:21 no
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FIG. 1 (color online). The combined energy spectrum from all
enrGe detectors without (with) PSD is shown by the open (filled)
histogram. The lower panel shows the region used for the
background interpolation. In the upper panel, the spectrum
zoomed to Q!! is superimposed with the expectations (with
PSD selection) based on the central value of Ref. [11] T0#

1=2 ¼
1:19# 1025 yr (red dashed) and with the 90% upper limit derived
in this work, corresponding to T0#

1=2 ¼ 2:1# 1025 yr (blue solid).

TABLE I. Parameters for the three data sets with and without
the pulse shape discrimination (PSD). ‘‘Background’’ (bkg) is
the number of events in the 230 keV window and BI is the
respective background index, calculated as bkg=ðE # 230 keVÞ.
‘‘Counts’’ refers to the observed number of events in the interval
Q!! ! 5 keV.

Data set E (kg yr) h$i Background BIa Counts

Without PSD

Golden 17.9 0:688! 0:031 76 18! 2 5

Silver 1.3 0:688! 0:031 19 63þ16
&14 1

BEGe 2.4 0:720! 0:018 23 42þ10
&8 1

With PSD

Golden 17.9 0:619þ0:044
&0:070 45 11! 2 2

Silver 1.3 0:619þ0:044
&0:070 9 30þ11

&9 1

BEGe 2.4 0:663! 0:022 3 5þ4
&3 0

aIn units of 10&3 counts=ðkeV kg yrÞ.

PRL 111, 122503 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

20 SEPTEMBER 2013

122503-4

• GERDA, exposure of 21 kg yr (76Ge)

• T1/2 > 2.1 x 1025 yr (90% C.L.)

• Rules out HM claim

PRL 111, 122503 (2013)


Current experimental status

Double beta decay

Double beta decay is a second-order
process which appears when single-�
decay is energetically forbidden or
hindered by large �J
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Current experimental status

Only lower limits to the half-lives 
have been measured so far

track and thermalize neutrons. The resulting neutron capture rates are
used as input to the Geant4-based20 EXO-200 simulation package9, with
the respective n-capture c-spectra produced on the basis of ENSDF
information25 for the given nuclides. The produced PDFs are used
in fits to the low-background data. Good shape agreement is found
between these PDFs and data coincident with muon-veto-panel events.

Results
The fit to the low-background data minimizes the negative log-likelihood
function constructed using a signal and background model composed
of PDFs from simulation. A profile-likelihood scan is performed to search
for a 0nbb signal.

The PDFs chosen for the low-background fit model are those used in
ref. 9 plus a ‘far-source’ 232Th PDF, a 137Xe PDF and neutron-capture-
related PDFs, including 136Xe neutron capture in the LXe, 1H neutron-
capture in the HFE, and 63Cu,65Cu neutron capture in Cu components
(LXe vessel, inner and outer cryostats). The far-source 232Th PDF allows
for background contributions from Th in materials far from the TPC,
for example in the HFE and in the copper cryostat. (Remote 238U is
included in the fit model via 222Rn, simulated in the air between the

cryostat and Pb shield.) We combine the neutron-capture-related PDFs
to form one PDF, allowing the relative rates of the component PDFs to
float within 20% of their simulation-estimated values. The total rate of
this summed PDF is allowed to float unconstrained.

We constrain the single-site fractions, SS/(SS 1 MS), of all compo-
nents to be within 9.6% of their value calculated from simulation. An
additional 90% correlation between single-site fractions of c compo-
nents is introduced into the likelihood function, owing to the consist-
ent behaviour observed in these parameters in calibration studies (for
example, Fig. 3). The overall normalization is allowed to float within
the estimated systematic errors (8.6%). The background-PDF ampli-
tudes within the ROI are also allowed to vary within their estimated
systematic errors (10.9%). The b-scale is not allowed to float during the
fit, but is manually profiled while performing the profile-likelihood
scan for 0nbb.

The final step before performing the fit was the unmasking of live-
time around the SS ROI. However, before unmasking the full data set,
we investigated backgrounds associated with Xe feeds, irregular occur-
rences in which additional Xe gas is introduced into the purification
circulation loop. (These Xe feeds occurred 10 times over the run period
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Figure 4 | Fit results projected in energy. a, b, Main panels show SS (a) and
MS (b) events, as counts versus energy, with a zoom-in (inset) around the ROI:
2250–2600 keV (2100–2700 keV) for SS (MS); the bin size is 14 keV, and data
points are shown in black. Lower panels in a and b show residuals between data
and best fit normalized to the Poisson error, ignoring bins with 0 events. The
green (blue) shaded regions in the lower panels represent 61s (62s)
deviations. The 7 (18) events between 4,000 and 9,800 keV in the SS (MS)

spectrum have been collected into an overflow bin for presentation here. The
vertical (red) lines in the SS spectra indicate the 62s ROI. The result of the
simultaneous fit to the standoff distance is not shown here. Several background
model components (including Rn, 135Xe and 137Xe, n-capture, 232Th (far),
Vessel, 0nbb and 2nbb, all described further in the text) are indicated in the
main panel of b to show their relative contributions to the spectra. Error bars on
data points, 61 s.d.
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• EXO-200, exposure of 100 kg yr (136Xe)

• T1/2 > 1.1 x 1025 yr (90% C.L.)

Nature 510, 229 (2014)

Double beta decay

Double beta decay is a second-order
process which appears when single-�
decay is energetically forbidden or
hindered by large �J
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Current experimental status

Experiment Decay Present limit T1/2 Forecast limit T1/2 Ref.
GERDA 76Ge > 2.1x1025 yr  ~2x1026 yr PRL. 111, 122503 (2013) 

Majorana 76Ge ——  ~4x1027 yr arXiv:nucl-ex/ 0311013

EXO-200 136Xe > 1.1x1025 yr ~1.3x1028 yr Nature 510, 229 (2014)

KamLAND-Zen 136Xe > 1.9x1025 yr ~4x1026 yr PRL 110, 062502 (2013)

NEXT 136Xe —— ~1026 yr JINST 7, C11007 (2012)

(Super)NEMO3 82Se > 3.6x1023 yr ~1.2x1026 yr PRL 95, 182302 (2005)

CUORICINO (CUORE) 130Te > 3x1024 yr ~2x1026 yr PRC 78, 035502 (2008)

(Super)NEMO3 150Nd > 1.8x1022 yr ~5x1025 yr PRC 80, 032501 (2009)

SNO+ 150Nd —— > 1.6x1025 yr J. Phys. Conf. Ser. 447, 
012065 (2013)

COBRA: See Jan Tebruegge’s talk!
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Neutrino mass hierarchy

K. Zuber 

1025 yrs 

1026 yrs 

1027 yrs 

1028 yrs 

Mass hierarchies and DBD 

normal inverted 

Claim of evidence 

1.) Is the claimed evidence correct?    
  GERDA phase I 
 
2.) Can we probe the inverted hierarchy? 
 
3.)  What about the normal hierarchy? 

T1/2 = 1.19 x 1025 yr 

H.V. Klapdor-Kleingrothaus  et al. 
Phys. Lett. B  586, 198 (2004) 

76Ge  1 

2 

3 

Neutrino flavor eigenstates are not the same as  the mass eigenstates
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• Leading lepton number violating process contributing to 0νββ decay

- Exchange of light Majorana neutrino. 
- Exchange of heavy Majorana neutrino.

- Leptoquarks.

- Supersymmetric particles.

- … 


• Transition operator connecting initial and final states

- Relativistic/Non-relativistic.

- Nucleon size effects.

- Two-body weak currents.

- Form factors.

- Short-range correlations.

- Closure approximation.

- …


• Nuclear structure method (fully consistent or not with the operator) for 
calculating these NME.


- Correlations.

- Symmetry conservation.

- Valence space.

- …

NME: Starting points
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Method Recent references

Interacting Shell Model (ISM)

- Phys. Rev. Lett. 100, 052503 (2008).


- Nucl. Phys. A 818, 139 (2009).


- Phys. Rev. C 87, 014320 (2013). 


- Phys. Rev. Lett. 113, 262501 (2014).

pnQRPA
- Phys. Rev. C 77, 045503 (2008). 


- Phys Rev. C 87, 045501 (2013).


- J. Phys. G 39, 124005 (2012).

Interacting Boson Model (IBM)
- Phys. Rev. C 79, 044301 (2009). 


- Phys Rev. C 87, 014315 (2013).

Generator Coordinate Method (GCM-EDF)

- Phys. Rev. Lett. 105, 252503 (2010). 


- Phys. Rev. Lett 111, 142501 (2013).


- arXiv:1410.6326.


- Phys. Rev. C 031031(R) (2014).

Nuclear structure methods
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Figure 5: (Color online) (a) Decomposition of the total NMEs from the fi-
nal GCM+PNAMP (PC-PK1) calculation; (b) the total NMEs calculated with
either only spherical configuration or full configurations, in comparison with
those of GCM+PNAMP (D1S) from Ref. [34]. The shaded area indicates the
uncertainty of the SRC effect within 10%. See text for more details.

the tensor terms were neglected. These two effects can bring a
difference up to ∼ 15% in the NMEs. By taking into account
this point, one can draw the conclusion from Fig. 5(b) that these
two calculations give consistent results for the total NMEs for
all the candidate nuclei with the exception of 150Nd.
Moreover, we note that in the calculation with pure spher-

ical configuration, PNP increases significantly the NMEs for
the 0νββ-decay evolved with one (semi)magic nucleus, includ-
ing 48Ca (127%), 116Cd (49%), 124Sn (55%), and 136Xe (58%),
where pairing collapse occurs in either protons or neutrons. The
increase in the NMEs by the PNP is mainly through the su-
perfluid partner nucleus. For 48Ca, pairing collapse is found
in both neutrons and protons, leading to about twice enhanced
normalized NME than the other three ones. It can be under-
stood from Eq.(6) that the ⟨βF = 0|Ô0νP̂J=0P̂NI P̂ZI |βI = 0⟩ for
48Ca-Ti does not change by the PNP, while the normalization
factorNF for the daughter nucleus 48Ti is increased, resulting in
the enhanced normalized NME. The comparison of the results
of “Sph+PNP (PC-PK1)” and “Sph+PNP (D1S)” in Fig. 5(b)
shows a large discrepancy in 100Mo-Ru and 150Nd-Sm. This
discrepancy could be attributed to different pairing properties.
However, after taking into account the static and dynamic de-
formation effects, which turn out to decrease the NME signif-
icantly, the discrepancy in 100Mo-Ru is much reduced, while
that in 150Nd-Sm remains and is mainly attributed to the differ-
ence in the overlap between the initial and final collective wave
functions, as already discussed in Ref. [37].
Figure 6 displays our final NMEs for the 0νββ-decay in

comparison with those by the ISM [23], renormalized QRPA
(RQRPA) [30], PHFB [33], NREDF (D1S) [34], and the
IBM2 [32]. There are also other calculations that are not taken

Figure 6: (Color online) Comparison of the NME M0ν for the 0νββ-decay from
different model calculations. The shaded area indicates the uncertainty of the
SRC effect within 10%. The adopted values are available on the web site [52].

Table 2: The upper limits of the effective neutrino mass ⟨mββ⟩ (eV) based on the
NMEs from the present GCM+PNAMP (PC-PK1) calculation, the lower limits
of the half-life T 0ν1/2(×10

24 yr) for the 0νββ-decay from most recent measure-
ments [56, 10, 57, 58, 8, 9, 59] and the phase-space factor G0ν(×10−15 yr−1)
from Ref. [14].

48Ca 76Ge 82Se 100Mo 130Te 136Xe 150Nd
⟨mββ⟩ ≤ 2.92 ≤ 0.20 ≤ 1.00 ≤ 0.38 ≤ 0.33 ≤ 0.11 ≤ 1.76
T 0ν1/2 ≥ 0.058 ≥ 30 ≥ 0.36 ≥ 1.1 ≥ 2.8 ≥ 34 ≥ 0.018
G0ν 24.81 2.363 10.16 15.92 14.22 14.58 60.03

for comparison. Here, only the calculations considering the
SRC effect with the UCOM (except for the IBM2 calculation
with the coupled-cluster model (CCM)) and using the radius
parameter R = 1.2A1/3 fm are adopted for comparison. Our
results are amongst the largest values of the existing calcula-
tions in most cases, except for 100Mo-Ru, 124Sn-Te and 130Te-
Xe. Moreover, the NME for 96Zr in both EDF-based calcu-
lations is significantly larger than the other results, which can
be traced back to the overestimated collectivity. If the ground
state of 96Zr was taken as the pure spherical configuration, the
NME becomes 5.64 (PC-PK1) and 3.94 (D1S), respectively.
We note that the consideration of higher-order deformation in
nuclear wave functions, such as octupole deformation in 150Sm-
Nd [53, 54], and triaxiality in 76Ge-Se [50, 51] and 100Mo-
Ru [55], is expected to hinder the corresponding NMEs further
in the DFT calculation.
Table 2 lists the upper limits of the effective neutrino mass
⟨mββ⟩ based on the present calculated NMEs for the nuclei
whose lower limits of the half-life T 0ν1/2 for the 0νββ-decay have
been recently measured [56, 10, 57, 58, 9, 59]. The smallest
value (≤ 0.11 eV) for the upper limit ⟨mββ⟩ is found based on the
combined results from KamLAND-Zen [9] and EXO-200 [8]
collaborations for the0νββ-decay half-life (T 0ν1/2 ≥ 3.4 × 10

25 yr
at 90% confidence level) of 136Xe. This value is closest to but
still larger than the estimated value (20 − 50 meV based on the
inverted hierarchy for neutrino masses [19]) by a factor of 2−5.
Summary and outlook.− In summary, we have reported a

5

J. M. Yao et al., arXiv:1410.6326

Current theoretical status

J. BAREA, J. KOTILA, AND F. IACHELLO PHYSICAL REVIEW C 87, 014315 (2013)

TABLE XII. Final IBM-2 matrix elements with M-S SRC and
error estimate.

Decay Light neutrino exchange Heavy neutrino exchange

48Ca 1.98(59) 16.3(95)
76Ge 5.42(103) 48.1(255)
82Se 4.37(83) 35.6(189)
96Zr 2.53(40) 59.0(309)
100Mo 3.73(60) 99.3(516)
110Pd 3.62(58) 95.7(498)
116Cd 2.78(44) 67.1(321)
124Sn 3.50(67) 37.8(200)
128Te 4.48(85) 48.4(257)
130Te 4.03(77) 44.0(233)
136Xe 3.33(63) 35.1(186)
148Nd 1.98(32) 59.4(309)
150Nd 2.32(37) 68.4(356)
154Sm 2.50(40) 67.1(349)
160Gd 3.62(58) 92.9(483)
198Pt 1.88(30) 61.5(320)

error is dominated by SRC. In Table XII we have used 58%
in 48Ca, 53% in nuclei with protons and neutrons in the same
major shell, and 52% in nuclei with protons and neutrons in
different major shells.

Finally, having investigated the effect of short-range corre-
lations on 0νββ we are now able to compare our results with
all available calculations done with the same SRC including
DFT [43] and HFB [42]. These are shown in Fig. 7. We
note now that while the ISM, the QRPA, and IBM-2 have
the same trend with A, the other two do not. For the isotopic
ratio M (0ν)(128Te)/M (0ν)(130Te) the DFT method gives 0.86,
in sharp contrast with the value 1.11. Also, while the ISM,
the QRPA, and IBM-2 have a small value for 96Zr, DFT has
a large value. We therefore conclude that the approximations
made in the DFT and HFB method lead to a different behavior
with A. This point is currently being investigated [50]. Also,
the Fermi matrix elements in DFT are comparable to those in
IBM-2 and larger than those in the ISM [50].
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FIG. 7. (Color online) IBM-2 results for 0νββ nuclear matrix
elements compared with QRPA-Tü [13], the ISM [14], QRPA-Jy
[36,54–56], QRPA-deformed [41], DFT [43], and HFB [42].
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FIG. 8. (Color online) Expected half-lives for ⟨mν⟩ = 1 eV, gA =
1.269. The points for 128Te and 148Nd decays are not included in this
figure. The figure is in semilogarithmic scale.

D. Limits on neutrino mass

1. Light neutrino exchange

The calculation of nuclear matrix elements in IBM-2 can
now be combined with the phase-space factors calculated in [8]
and given in Table III and Fig. 8 of that reference to produce
our final results for half-lives for light neutrino exchange in
Table XIII and Fig. 8. The half-lives are calculated using the
formula

[
τ 0ν

1/2

]−1 = G
(0)
0ν |M0ν |2

∣∣∣∣
⟨mν⟩
me

∣∣∣∣
2

. (21)

We note here that the combination must be done consistently.
If the value of gA is included in M0ν , then it should not be
included in G

(0)
0ν , and similarly for a factor of 4 included in

some definition of G
(0)
0ν [2] and not in others [57]. See Eq. (53)

of Ref. [8]. This point has caused considerable confusion in
the literature. In Table XIII and Fig. 8 the values ⟨mν⟩ = 1 eV
and gA = 1.269 are used. For other values they can be scaled
with |⟨mν⟩/me|2 and g4

A.
The effective neutrino mass is the quantity we want

to extract from experiment. Unfortunately, the axial vector
coupling constant is renormalized in nuclei to gA,eff . A
(model-dependent) estimate of gA,eff can be obtained from
the experimental knowledge of single-β decay and/or of 2νββ
decay. This will be discussed in the following section. Here
we show in Fig. 9 and Table XIII the limits on neutrino
mass from current experimental upper limits using IBM-2
matrix elements of Table V and gA = 1.269. In addition to
the experimental upper limits, a value has been reported for
the half-life in 76Ge, 1.2 × 1025 yr [59]. This is also reported
in Fig. 9.

The average light neutrino mass is constrained by atmo-
spheric, solar, reactor, and accelerator neutrino oscillation
experiments to be [64]

⟨mν⟩ =
∣∣c2

13c
2
12m1 + c2

13s
2
12m2e

iϕ2 + s2
13m3e

iϕ3
∣∣ ,

cij = cos ϑij , sij = sin ϑij , ϕ2,3 = [0, 2π ],
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tivistic formalism. (3) The finite nucleon size correction
is taken care of by the momentum dependent form fac-
tors. (4) According to a recent study [49], realistic values
of short range correlation have only a small effect (< 7%)
on the ββ matrix elements, thus we omit the contribu-
tion of short range correlation presently. (5) The coupling
constant gA = 1.254 is adopted without quenching.
This paper is organized in the following way. In Sec. II,

the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Crucial steps of the derivation of the decay operator
can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
The starting point is the standard semi-leptonic weak

charged-current Hamiltonian [50],

Hweak(x) =
GF cos θC√

2
jµ(x)J †

µ (x) + h.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle,
and the standard leptonic current adopts (V −A) form

jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon
field ψ,

J †
µ (x) = ψ̄(x)

[

gV (q
2)γµ + igM (q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5
]

τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
0ν |0+I ⟩, (8)

where |0+I/F ⟩ is the wave function of the initial(I)/final(F)
state, and the decay operator reads

Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

J †
µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average

one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
operator becomes

4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

J †
µ (x1)J µ†(x2)

q + Ed
,

(10)

where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
tor Ed within a certain range will not lead to dramatic
changes of M0ν [22, 46–48]. The sensitivity of the NME
to changes of Ed will be discussed further later.
Considering the four terms in Eq. (7), the operator

can be decomposed into the vector coupling (VV), axial-
vector coupling (AA), axial-vector and pseudoscalar
coupling (AP), pseudoscalar coupling (PP), and weak-
magnetism coupling (MM) channels, as

Ô0ν =
∑

i

Ô0ν
i , (i = V V,AA,AP, PP,MM) (11)

with each component being

Ô0ν
i =

4πR

g2A

∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q(q + Ed)

[

J †
µJ µ†

]

i
,

(12)

and the “two-current” operators
[

J †J †
]

i
being

g2V (q
2)
(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

, (13a)

g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

, (13b)

2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13c)

g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13d)

g2M (q2)

(

ψ̄
σµi
2mp

qiτ−ψ

)(1)(

ψ̄
σµj

2mp
qjτ−ψ

)(2)

. (13e)
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jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon
field ψ,

J †
µ (x) = ψ̄(x)

[

gV (q
2)γµ + igM (q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5
]

τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
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the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.
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jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon
field ψ,

J †
µ (x) = ψ̄(x)

[

gV (q
2)γµ + igM (q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5
]

τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
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where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
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jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon
field ψ,

J †
µ (x) = ψ̄(x)

[

gV (q
2)γµ + igM (q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5
]

τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
0ν |0+I ⟩, (8)

where |0+I/F ⟩ is the wave function of the initial(I)/final(F)
state, and the decay operator reads
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jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon
field ψ,

J †
µ (x) = ψ̄(x)

[

gV (q
2)γµ + igM (q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5
]

τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
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the derivation of the 0νββ decay operator in the mass
mechanism, the formalism of the MR-CDFT, and the
expression of M0ν in MR-CDFT are briefly introduced.
Sec. III is devoted to the numerical details. In Sec. IV
we present the results for the nuclear structure properties
and the NMEs. At last the investigations are summarized
in Sec. V.

II. THEORETICAL FRAMEWORK

A. Decay operator

Crucial steps of the derivation of the decay operator
can be found in many papers [6, 10, 12]. However, all
these authors end up with the non-relativistic reduced
operator. Therefore, in order to have a consistent rela-
tivistic description, it becomes necessary to briefly repeat
the derivation and to show the form of the relativistic op-
erator used in our calculations and to be specific about
the parameters and approximations involved in it.
The starting point is the standard semi-leptonic weak

charged-current Hamiltonian [50],

Hweak(x) =
GF cos θC√

2
jµ(x)J †

µ (x) + h.c., (5)

where GF is the Fermi constant, θC is the Cabbibo angle,
and the standard leptonic current adopts (V −A) form

jµ(x) = ē(x)γµ(1− γ5)νe(x). (6)

The hadronic current is expressed in terms of nucleon
field ψ,

J †
µ (x) = ψ̄(x)

[

gV (q
2)γµ + igM (q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5
]

τ−ψ(x), (7)

wheremp is the nucleon mass, qµ is the momentum trans-
ferred from leptons to hadrons, τ− is the isospin lowing
operator, and σµν = i

2 [γµ, γν ]. The form factors gV (q2),
gA(q2), gM (q2), and gP (q2), in which the effects of the fi-
nite nucleon size are incorporated, represent, in the zero-
momentum transfer limit, the vector, the axial-vector,
the weak-magnetism, and the induced pseudoscalar cou-
pling constants. We adopt here the same expressions for
the form factors as in Ref. [10].
By using the long-wave approximation for the outgo-

ing electrons and neglecting the small energy transfer

between nucleons, the NME of the 0νββ decay can be
obtained after a few steps [8]:

M0ν(0+I → 0+F ) ≡ ⟨0+F |Ô
0ν |0+I ⟩, (8)

where |0+I/F ⟩ is the wave function of the initial(I)/final(F)
state, and the decay operator reads

Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

×
∑

m

J †
µ (x1)|m⟩⟨m|J µ†(x2)

q + Em − (EI + EF )/2
, (9)

where R = r0A1/3 with r0 = 1.2 fm is introduced to
make the NME dimensionless. The summation runs over
all the possible states of the intermediate nucleus |m⟩,
and Em is the corresponding energy of each state.
Replacing the state-dependent energy by an average

one: Em → Ē, the intermediate states can be eliminated
by making use of the closure approximation. Then the
operator becomes

4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q

J †
µ (x1)J µ†(x2)

q + Ed
,

(10)

where Ed ≡ Ē − (EI + EF )/2, is the average excitation
energy. There are claims that the closure approxima-
tion is reliable in the calculation of M0ν , since differ-
ent values of the parameter Ē or the energy denomina-
tor Ed within a certain range will not lead to dramatic
changes of M0ν [22, 46–48]. The sensitivity of the NME
to changes of Ed will be discussed further later.
Considering the four terms in Eq. (7), the operator

can be decomposed into the vector coupling (VV), axial-
vector coupling (AA), axial-vector and pseudoscalar
coupling (AP), pseudoscalar coupling (PP), and weak-
magnetism coupling (MM) channels, as

Ô0ν =
∑

i

Ô0ν
i , (i = V V,AA,AP, PP,MM) (11)

with each component being

Ô0ν
i =

4πR

g2A

∫

d3x1d
3x2

∫

d3q

(2π)3
eiq·(x1−x2)

q(q + Ed)

[

J †
µJ µ†

]

i
,

(12)

and the “two-current” operators
[

J †J †
]

i
being

g2V (q
2)
(

ψ̄γµτ−ψ
)(1) (

ψ̄γµτ−ψ
)(2)

, (13a)

g2A(q
2)
(

ψ̄γµγ5τ−ψ
)(1) (

ψ̄γµγ5τ−ψ
)(2)

, (13b)

2gA(q
2)gP (q

2)
(

ψ̄γγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13c)

g2P (q
2)
(

ψ̄qγ5τ−ψ
)(1) (

ψ̄qγ5τ−ψ
)(2)

, (13d)

g2M (q2)

(

ψ̄
σµi
2mp

qiτ−ψ

)(1)(

ψ̄
σµj

2mp
qjτ−ψ

)(2)

. (13e)
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• Non-relativistic reduction
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versions of the 5D-collective Bohr Hamiltonian provide a
very successful alternative which can be applied even in
heavy nuclei [67]. It remains to be investigated in the fu-
ture, whether these methods can be used also successfully
for investigations of 0νββ decay matrix elements.

3. Validity of non-relativistic reduced calculations and
contribution of the tensor term

One advantage of our method is that it is fully rela-
tivistic and therefore it allows us to investigate the non-
relativistic approximation in most calculations. In this
case the hadronic current J †

µ (x) in Eq. (10) is expanded
in terms of |q|/mp. If terms are kept up to the first order,
the fully relativistic operator in Eq. (10) is reduced to the
non-relativistic operator used in previous studies [12, 68].
The non-relativistic “two-current” operator

[

J †
µJ µ†

]

NR
can be decomposed, as in other non-relativistic calcula-
tions, into the Fermi, the Gamow-Teller, and the tensor
parts:

[

−hF(q
2) + hGT(q

2)σ12 + hT(q
2)Sq

12

]

τ (1)− τ (2)− , (34)

with the tensor operator Sq
12 = 3(σ(1) · q̂)(σ(2) · q̂)− σ12

and σ12 = σ(1) · σ(2). Each channel (K: F, GT, T)
of Eq. (34) can be labeled by the terms of the hadronic
current from which it originates, as

hK(q2) =
∑

i

hK−i(q
2), (i = V V,AA,AP, PP,MM)

with

hF−V V (q
2) = −g2V (q

2), (35a)

hGT−AA(q
2) = −g2A(q

2), (35b)

hGT−AP (q
2) =

2

3
gA(q

2)gP (q
2)

q2

2mp
, (35c)

hGT−PP (q
2) = −1

3
g2P (q

2)
q4

4m2
p

, (35d)

hGT−MM (q2) = −2

3
g2M (q2)

q2

4m2
p
, (35e)

hT−AP (q
2) = hGT−AP (q

2), (35f)

hT−PP (q
2) = hGT−PP (q

2), (35g)

hT−MM (q2) = −1

2
hGT−MM (q2). (35h)

In Fig. 9 we compare results calculated with the first
order operator with those of the full operator, for the
NME in each coupling channel and for both the 0+1 → 0+1
and 0+1 → 0+2 transitions. For comparison we also dis-
play the results obtained by the operator with zeroth
order of |q|/mp in the hadronic current. In all circum-
stances the dominant contributions come from the AA
coupling channel. In zeroth order of the non-relativistic
reduction it represents the Gamow-Teller channel. In this
comparison, considerable differences could only be found

in the AP and PP coupling channels due to the counter-
diagonal structure of the gamma matrices involved. How-
ever, the deviations cancel out (< 1%) in the total NMEs
for the first order operator, while the results of the ze-
roth order operator deviate by roughly 16%. Thus the
first order operator utilized by other authors is a very
good approximation to the full operator retaining most
of the relativistic effects.

FIG. 9: (Color online) Contribution from each coupling chan-
nel to the total NMEs of 0νββ decay from 150Nd to 150Sm, for
both the (a) 0+1 → 0+1 and (b) 0+1 → 0+2 transitions. Values
of M0ν evaluated using the full relativistic operator Ô0ν are
compared with that obtained with the operators in the non-
relativistic approximations. The results are calculated with
the GCM+AMP method.

In Table III we present results for the 0+1 → 0+1 transi-
tion obtained with the first order operator. They are
compared with IBM-2 calculations [20]. Considering
χT = MT/MGT, the ratio of the tensor part to the dom-
inant Gamow-Teller part, one clearly recognizes the im-
portance of the tensor term. In the literature one finds
rarely discussions about the tensor effect for the nucleus
150Nd. However, analysing the results for other isotopes,
two different conclusions can be drawn. On the one
hand, the tensor effect is considered as negligible with
χT < 1% according to the calculations in the ISM [17],
in the QRPA studies of the Jyvaskyla group [11] and in
PHFB [22], and it is totally neglected in the NREDF cal-
culations of Refs. [23, 26]. On the other hand, it is proven
to be important with a contribution of 5% to 10% in the
QRPA calculations of the Tübingen group [10] and in
the IBM calculations [20]. Our result seems to be con-
sistent with the later opinion. As we can see from the
table, while the absolute value for the tensor term in our
calculation is very close to that given by the IBM-2, χT

is smaller due to the larger Gamow-Teller contribution.
This implies that we predict a relatively small tensor ef-
fect, but in the same order of magnitude as the IBM-2
calculations [20]. This conclusion needs to be confirmed
by further systematic investigations.

Transition operator

J. M. Yao et al., arXiv:1410.6326

Table 1: The normalized NME M̃0ν for the 0νββ-decay obtained with the
particle number projected spherical mean-field configuration (βI = βF = 0)
by the PC-PK1 force using both the relativistic and non-relativistic reduced
(first-order of q/mp in the one-body current) transition operators. The ratio
of the AA term to the total NME, RAA ≡ M̃0ν

AA/M̃
0ν , the relativistic effect

∆Rel. ≡ (M̃0ν − M̃0ν
NR)/M̃

0ν and the ratio of the tensor part to the total NME,
RT ≡ M̃0ν

NR,T/M̃
0ν
NR, are also presented.

Sph+PNP (PC-PK1) M̃0ν RAA M̃0ν
NR ∆Rel. RT

48Ca→48Ti 3.66 81% 3.74 −2.1% −2.4%
76Ge→76Se 7.59 94% 7.71 −1.6% 3.5%
82Se→82Kr 7.58 93% 7.68 −1.4% 2.9%
96Zr→96Mo 5.64 95% 5.63 0.2% 3.6%
100Mo→100Ru 10.92 95% 10.91 0.1% 3.5%
116Cd→116Sn 6.18 94% 6.13 0.7% 1.9%
124Sn→124Te 6.66 94% 6.78 −1.8% 4.9%
130Te→130Xe 9.50 94% 9.64 −1.4% 4.3%
136Xe→136Ba 6.59 94% 6.70 −1.7% 4.1%
150Nd→150Sm 13.25 95% 13.08 1.3% 2.5%

tions of the mother and daughter nuclei differ considerably from
each other, such as 76Ge-Se and 150Nd-Sm. Moreover, shape
fluctuation is shown to be significant in the light 0νββ candi-
date nuclei, the description of which is impossible with the ap-
proaches based on single-reference state [33, 28, 29]. This dy-
namic deformation effect (or shape mixing effect) could mod-
erate the quenching effect from the static deformation on the
NMEs [37], which is fully taken into account in the present
multi-reference BMF-CDFT approach.
Nuclear matrix elements for the 0νββ decay.− In order

to show the deformation-dependence of the NME, Table 1
presents the normalized NME M̃0ν(βI , βF) at spherical shape
(βI = βF = 0) for the 0νββ-decay obtained with both the rela-
tivistic and non-relativistic reduced transition operators, where
M̃0ν is defined as

M̃0ν(βI , βF) = NFNI ⟨βF |Ô
0νP̂J=0P̂NI P̂ZI |βI⟩, (6)

with N−2a = ⟨βa|P̂J=000 P̂Na P̂Za |βa⟩ for a = I, F. It is seen that
the error arisen from the first-order non-relativistic reduction is
marginal, which can either increase or decrease the total NME
by a factor within 2%. This value is modified only slightly
in the full GCM calculation, for instance becoming ∼ 5% for
150Nd [37]. The one-body charge-changing nucleon current,
Eq. (4), generates not only the Fermi and Gamow-Teller (GT)
terms but also tensor terms that have been neglected in the non-
relativistic study [34]. With the help of non-relativistic approx-
imation of the transition operator, one can isolate the contribu-
tion of the tensor part [26, 37], which is obtained by subtracting
the contributions of Fermi and GT terms from the total NME.
It is shown in Table 1 that the contribution of tensor terms is
within 5% of the total NME.
Figure 4 displays the normalized NME M̃0ν as a function of

the intrinsic quadrupole deformation βI and βF of the mother
and daughter nuclei, respectively. Similar to the behavior of the
GT part shown in the MR-DFT (D1S) calculation [34], the nor-
malized NME M̃0ν is concentrated rather symmetrically along
the diagonal line βI = βF , implying that the decay between

Figure 4: (Color online) Normalized NME M̃0ν as a function of the intrinsic
deformation parameter β of the initial AZ and final A(Z + 2) nuclei.

nuclei with different deformation is strongly hindered. More-
over, the M̃0ν has the largest value at the spherical configura-
tion for most candidate nuclei except for 48Ca-Ti, 96Zr-Mo, and
136Xe-Ba. It implies that generally the 0νββ-decay is favored if
both nuclei are spherical. The largest M̃0ν in 136Xe-Ba is found
around the deformation region with βI = βF ≃ 0.5, at which
deformed configuration, pairing energy is peaked in both nu-
clei due to the very high single-particle level density. However,
this configuration (β ≃ 0.5) has a negligible contribution to the
final NME of 136Xe-Ba because its weight is almost zero in the
ground-state wave function, cf. Fig. 3.
Figure 5(a) displays the contribution of each coupling term

(AA,VV, PP,MM, AP) in Eq.(4) to the total NMEs. It is shown
that the weak-magnetism (MM) term is negligible (∼ 4%).
The interference term of the axial-vector (AA) and pseudoscalar
coupling (AP) has an opposite contribution (∼ 30%), which
almost cancels out the sum of VV , PP, and MM terms. Of
particular interest is that the total NME has a very similar
behavior as that of the predominated AA term with the ratio
RAA ≃ 95%. Actually, we have found that the deformation-
dependent NMEs shown in Fig. 4 are also very similar even
if we include only the AA term. It indicates that the AA term
provides a good approximation for the total NME, Eq. (3).
In the non-relativistic approximation, the two-current opera-
tor with only the axial-vector coupling term is simplified as
J†L,µ(x1)J

µ†

L (x2) = −g
2
A(q

2)σ(1) · σ(2)τ(1)− τ
(2)
− , the calculation of

which is much cheaper than computing the full terms, cf. (4).
Similar conclusion can also be made based on the results of
QRPA calculation [26] using the non-relativistic reduced op-
erators. Figure 5(b) displays the NMEs calculated either with
pure spherical configuration or with full configurations in the
GCM+PNAMP (PC-PK1), in comparison with those of the
non-relativistic results [34]. Before comparing the two results,
we should point out that in the non-relativistic calculation [34],
the SRC effect was taken into account with the UCOM, while

4
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Neutrino potentials
Starting from the weak lagrangian that describes the process some 
approximations are made:    


1. Non-relativistic approach in the hadronic part.


2. Closure approximation in the virtual intermediate state


3. Nucleon form factors taken in the dipolar approximation.


4. Tensor contribution is neglected.


5. High order currents are included (HOC).


6. Short range correlations are included with an UCOM correlator.

- Find the initial and final 0+ (and, in the no closure approximation, the intermediate) states

- Evaluate the transition operators between these states

Transition operator



Hirschegg 2015 | Present status and future perspectives for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

2. 0νββ transition operator 3. Nuclear structure effects1. Introduction 4. Summary and outlook

Transition operator

• The ‘bare’ operator should be 
transformed into an ‘effective’ 
operator defined in the valence space 

➥ these are problems closely related to the quenching of Gamow-Teller strength

• Two-body weak currents could play a relevant role

J.D. Holt, J. Engel, Phys. Rev. C 87, 064315 (2013)

EFFECTIVE DOUBLE-β-DECAY OPERATOR FOR . . . PHYSICAL REVIEW C 87, 064315 (2013)

discussion. No matter the two-body operator of interest, how-
ever, the starting point is always the construction of projection
operators P̂ and Q̂ that divide the full many-body Hilbert space
into a model space, in which subsequent exact diagonalization
is carried out, and everything else. In our calculations in nuclei
with mass near A = 80, the model space consists of the 0f5/2,
1p3/2, 1p1/2, and 0g9/2 single-particle orbits, for both protons
and neutrons, above a 56Ni core in a harmonic-oscillator basis
of 13 major shells with h̄ω = 10.0 MeV.

After specifying the model space, one must define a
mapping between eigenstates of the full Hamiltonian and pro-
jections of those eigenstates onto the model space. In MBPT
this is done perturbatively. The result is a set of diagrams with
two incoming legs and two outgoing legs, with each diagram
representing a contribution to the two-body matrix elements
of the effective Hamiltonian or effective (two-body) transition
operator. The usual Feynman rules are used to evaluate the
diagrams, but to the set of familiar-looking diagrams one must
add “folded” diagrams, which eliminate the energy depen-
dence of the effective operator [15,16]. One way to organize
the sum of all diagrams is by grouping all those without
folds into a “Q̂ box” (for the Hamiltonian) or an “X̂ box”
(for the transition operator) and then writing the complete sum,
including folded diagrams, in terms of the Q̂ and X̂ boxes and
their derivatives with respect to unperturbed energies. The first
few terms in the Q̂ and X̂ boxes appear in Figs. 1 and 2.

Folding is significantly more complicated for a two-body
transition operator, which combines X̂ and Q̂ boxes, than for
the Hamiltonian, where only Q̂ boxes are needed. Effective
model-space operators in the basis of energy eigenstates are
always defined (for a bare operator M) via

⟨feff|Meff |ieff⟩
⟨feff|feff⟩

1
2 ⟨ieff|ieff⟩

1
2

= ⟨f |M |i⟩ , (6)

where the states that lie in the model space, |ieff⟩ ≡ P̂ |i⟩
and |feff⟩ ≡ P̂ |f ⟩, are not in general normalized. If M is
the Hamiltonian, then only diagonal matrix elements are
nonzero, and the denominator is canceled by a similar factor
in the numerator. For two-body transition operators, that is
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FIG. 1. The Q̂ box to second order in Vlow k (ellipses indicate
higher-order terms). The first line contains one-body contributions
and the others contain two-body contributions. Exchange diagrams,
though not shown, are included in our calculations.
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FIG. 2. (Color online) The X̂ box to first order in Vlow k . Solid
(red online) up- or down-going lines indicate neutrons and dotted
(blue online) lines indicate protons. The wavy horizontal lines, as in
Fig. 1, represent Vlow k , and the dashed horizontal lines represent the
0νββ-decay operator in Eq. (1).

not the case, and state norms must be explicitly computed.
Prior authors have approached the issue of norms in several
ways. References [2,29], for instance, choose to expand the
denominators and fold them into the numerators, thus com-
pletely eliminating all disconnected diagrams. The resulting
expressions, however, become complicated as the number of
folds increases, and the approach requires the construction
of a special basis as an intermediate step. For these reasons
Ref. [28] advocates keeping the denominator and numerator
separate, at the price of introducing disconnected diagrams
that only cancel when the sum is carried out completely. Here,
though we evaluate the Q̂ box to third order and the X̂ box
to second order in the interaction, we include only one fold in
each of the three factors on the left-hand side of Eq. (6), and so
opt to follow Refs. [2,28] in expanding the denominator and
folding with the numerator. The resulting expression for the
matrix elements of an operator Meff is approximately1

⟨cd|Meff |ab⟩

=
([

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε) + 3
8

(
dQ̂(ε)

dε

)2

. . .

]

×
[
X̂(ε) + Q̂(ε)

∂X̂(εf , ε)
∂εf

∣∣∣∣
εf =ε

+ ∂X̂(ε, εi)
∂εi

∣∣∣∣
εi=ε

Q̂(ε) . . .

]

×
[

1 + 1
2

dQ̂(ε)
dε

+ 1
2

d2Q̂(ε)
d2ε

Q̂(ε)

+ 3
8

(
dQ̂(ε)

dε

)2

. . .

])

cd,ab

, (7)

where ε is the unperturbed energy of both the initial and final
states (we take the energies to be the same). Both Q̂ and X̂ are
matrices, with indices corresponding to the possible two-body

1Because of the need for a special basis, this expression is only
strictly correct when the terms in square brackets are diagonal. They
are close to diagonal in the calculations presented here.
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where E ¼ Ei " E0
i, p ¼ pi " p0

i, and P ¼ pi þ p0
i,

and vector (V), axial (A), pseudoscalar (P), and magnetic
(M) couplings, gVðp2Þ, gAðp2Þ, gPðp2Þ, and gMðp2Þ [9].
In chiral EFT, the p dependence is due to loop

corrections and pion propagators, to order Q2: gV;Aðp2Þ ¼
gV;Að1" 2 p2

!2
V;A
Þ, with gV ¼ 1, !V ¼ 850 MeV, !A ¼

2
ffiffiffi
3

p
=rA ¼ 1040 MeV; gPðp2Þ ¼ 2g!pnF!

m2
!þp2 " 4gAðp2Þ m

!2
A

and gM ¼ "p ""n ¼ 3:70, with pion decay constant
F!¼92:4MeV,m!¼138:04MeV, and g!pn¼13:05 [11].

At leading order Q0, only the momentum-independent
gA and gV terms contribute. They give rise to p & 1 MeV
GTand Fermi (#") single-$ and 2%$$ decay. On the other
hand, when studying processes that probe larger momen-
tum transfers, terms of order Q2 need to be included.
For 0%$$ decay with p& 100 MeV, the Q0 terms are
still most important and the axial term dominates. In SM
calculations [12], one has M0%$$

Q0;axial
=M0%$$ ' 1:20,

M0%$$
Q0;vector

=M0%$$ ' 0:15 compared to the final M0%$$.

Among the Q2 terms, form-factor-type (FF) contribu-
tions and the gP part of Ji;1b dominate. The pseudoscalar
term is important, because pgPðp2Þ ' 7:9 for p&
100 MeV in 0%$$ decay. They reduce the NMEs:
M0%$$

FF =M0%$$ ' "0:20 and M0%$$
gP =M0%$$ ' "0:20

[12]. The remaining Q2 terms are odd under parity, so
they require either a P-wave electron (whose phase space
is suppressed [10] by ' 0:03–0:06 for 0%$$ decay

candidates) or another odd-parity term to connect 0þ

states. Therefore, the P and E terms in Eqs. (1) and (2)
can be neglected, and only the term with the large
gM þ gV ¼ 4:70 is kept, leading to a small ' 5%
contribution [12].
At order Q3, 2b currents enter in chiral EFT [5]. These

include vector spatial, axial temporal, and axial spatial
parts [13]. The first two are odd under parity, and therefore
can be neglected. Consequently, for the cases studied here,
the dominant weak 2b currents only have an axial spatial
component, Jaxial2b ¼ PA

i<j Jij, with [5]

J12¼" gA
F2
!
½2d1ð!1#

"
1 þ!2#

"
2 Þþd2!)#

"
)*

" gA
2F2

!

1

m2
!þk2

"#
c4þ

1

4m

$
k)ð!))kÞ#")

þ4c3k + ð!1#
"
1 þ!2#

"
2 Þk" i

2m
k + ð!1"!2Þq#")

%
;

(3)

where #") ¼ ð#1 ) #2Þ" and the same for !), k ¼ 1
2 ðp0

2 "
p2 " p0

1 þ p1Þ and q¼ 1
4ðp1þp0

1"p2"p0
2Þ. Equation (3)

includes contributions from the one-pion-exchange c3, c4
parts and from the short-range couplings d1, d2, where due
to the Pauli principle only the combination d1 þ 2d2 ¼
cD=ðgA!&Þ enters (with !& ¼ 700 MeV).
We study the impact of chiral 2b currents in nuclei at the

normal-ordered 1b level by summing the second nucleon
over occupied states in a spin and isospin symmetric
reference state or core: Jeffi;2b ¼

P
jð1" PijÞJij, where Pij

is the exchange operator. The normal-ordered 1b level is
expected to be a very good approximation in medium-mass
and heavy nuclei, because of phase space arguments [14].
This has also been explored for chiral 2b currents in
nuclear matter [15], but limited to long wavelengths and
without connecting 2b currents and nuclear forces. Taking
a Fermi-gas approximation for the core and neglecting
tensorlike terms ðk + !k" 1

3 k
2!Þ#", we obtain the

normal-ordered 1b current:

Jeffi;2b ¼ "gA!i#
"
i

'

F2
!

"
cD

gA!&
þ 2

3
c3

p2

4m2
! þ p2

þ Ið'; PÞ
#
1

3
ð2c4 " c3Þ þ

1

6m

$%
; (4)

where ' ¼ 2k3F=ð3!2Þ is the density of the reference state,
kF the corresponding Fermi momentum, and Ið'; PÞ is due
to the summation in the exchange term,

Ið';PÞ¼1"3m2
!

2k2F
þ3m3

!

2k3F
arccot

"
m2

!þP2=4"k2F
2m!kF

%

þ 3m2
!

4k3FP

#
k2Fþm2

!"
P2

4

$
log

"
m2

!þðkF"P=2Þ2
m2

!þðkFþP=2Þ2
%
:

(5)
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FIG. 2 (color online). Nuclear matrix elements M0%$$ for
0%$$ decay. At order Q0, the NMEs include only the leading
p ¼ 0 axial and vector 1b currents. At the next order, all Q2

1b-current contributions not suppressed by parity are taken into
account. At order Q3, the thick bars are predicted from the long-
range parts of 2b currents (cD ¼ 0). The thin bars estimate the
theoretical uncertainty from the short-range coupling cD by
taking an extreme range for the quenching (see text). For
comparison, we show the SM results of Ref. [12] based on
phenomenological 1b currents only. The inset (representative

for 136Xe) shows that the GT part, M0%$$
GT ¼ R

dpCGTðpÞ, is
dominated by p& 100 MeV.
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TABLE II. The same as Table I, but for the CD-Bonn interaction instead of the Argonne V18 interaction.

Nucleus M ′0ν M ′0ν 2bc ⟨M ′0ν⟩ ε (%)
1bc Parameters of Ref. [7] Parameters of Ref. [8] with

a b c d a b c d
quenching

48Ca 0.649 0.615 0.605 0.561 0.542 0.606 0.606 0.570 0.569 0.58(0.03) 10
76Ge 5.849 5.086 4.904 4.356 4.082 4.990 4.858 4.371 4.175 4.60(0.40) 21
82Se 5.255 4.538 4.366 3.848 3.577 4.453 4.327 3.867 3.669 4.08(0.38) 22
96Zr 3.144 2.953 2.872 2.608 2.485 2.883 2.835 2.603 2.532 2.72(0.18) 12
100Mo 6.164 5.469 5.295 4.747 4.469 5.326 5.208 4.726 4.542 4.97(0.39) 19
110Pd 6.532 5.772 5.589 5.029 4.758 5.629 5.497 4.998 4.806 5.26(0.40) 19
116Cd 4.474 3.888 3.749 3.338 3.125 3.796 3.685 3.317 3.149 3.51(0.31) 22
124Sn 4.024 3.646 3.556 3.273 3.158 3.553 3.494 3.239 3.170 3.29(0.20) 16
130Te 4.642 4.063 3.921 3.473 3.242 3.958 3.861 3.468 3.313 3.66(0.32) 21
136Xe 2.602 2.276 2.196 1.943 1.812 2.206 2.149 1.926 1.837 2.04(0.18) 21

and still contribute non-negligibly at several hundred MeV. In
addition, the 0νββ matrix element contains a Fermi part, for
which we have assumed no quenching. While this assumption
may not be completely accurate, it is implied at low momentum
transfer by conservation of the vector current (CVC). The
overall quenching of the vector current is certain to be less
than that of the axial-vector current. (In the results listed in
Tables I and II the Fermi matrix elements are smaller than in
some other calculations because the isovector particle-particle
interaction was adjusted as explained in Ref. [15] to reflect
isospin symmetry).

Why is the QRPA 0νββ quenching less than that in the shell
model? Part of the reason, as we noted in the introduction,
is that in the QRPA the strength of the isoscalar pairing
interaction, which we call gT =0

pp , is adjusted to reproduce
the measured 2νββ rate. The suppression of 2νββ decay by
two-body currents implies that the value of gT =0

pp is smaller
than it would be without those currents. The smaller gT =0

pp in
turn implies less quenching for the 0νββ matrix element.
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2bc (CD-Bonn) 

48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136X e

FIG. 1. (Color online) Nuclear matrix elements M ′0ν for all the
nuclei considered here. The empty circles and squares represent the
results with the one-body current only, and the solid circles and
squares the average of the results with two-body currents included.
The error bars represent the dispersion in those values (see text).

Figure 2 illustrates this idea. The upper panel shows the
2νββ matrix element, with (solid red) and without (dashed
blue) two-body currents. The two vertical lines indicate the
values of gT =0

pp needed to reproduce the “measured” matrix
element [16], defined as that which gives the lifetime under
the assumption that gA is unquenched. The value of gT =0

pp that
works with the two-body currents is smaller. The lower panel
shows the consequences for 0νββ decay. The longer (purple)
arrow represents the quenching that would obtain if gT =0

pp were
not adjusted for the presence of the two-body currents (as is the
case in the shell model, where the interaction is fixed ahead
of time). The shorter arrow represents the same quenching
after adjusting gT =0

pp . The requirement that we reproduce 2νββ
decay thus means that the 0νββ matrix element is quenched
noticeably less than it would otherwise be.
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FIG. 2. (Color online) The quenching of 2νββ and 0νββ decay
by two-body currents in χEFT. Top: M ′2ν vs gT =0

pp , the strength
of isoscalar pairing. The solid (red) line is the unquenched matrix
element and the dashed (blue) line the matrix element with quenching
caused by two-body currents, with the parametrization EGM+δci

from Ref. [7]. The dotted black line is the measured matrix element
[16] under the assumption that gA is unquenched. The vertical lines
are the values of gT =0

pp that reproduce the measurement with and
without two-body currents. Bottom: The same, for M ′0ν (without a
measured value). The long (purple) arrow represents the quenching
when gT =0

pp is not readjusted to reproduce 2νββ decay. The short
(cyan) arrow is the quenching when gT =0

pp is readjusted.
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could also do the 
job!
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We want to study the role of


- Deformation and shape mixing.

- Pairing pp/nn/pn correlations.

- Shell effects.

- Isospin conservation.

- Pair breaking (seniority).

- Occupation numbers.

- Size of the valence space.


in the nuclear matrix elements using a standard prescription for the 
transition operator.

NME: Nuclear structure aspects
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‣ Use of phenomenological interactions (adjusted to data in finite nuclei) is necessary to 
obtain precise predictions/descriptions of ground state, spectroscopic and reaction data.    

LARGE SCALE SHELL MODEL

• Exact diagonalizations within a valence space. 

• Effective interactions adapted to the valence 

space and adjusted to reproduce the evolution of 

single particle energies (monopoles).    

• Very precise description of spectroscopy and 

transitions of nuclei. 

• Limited by the combinatorial increase of the 

number of configurations. 

• Defined in the laboratory frame

SELF-CONSISTENT MEAN FIELD

• Variational approach with simple trial wave 

functions (HFB) using ‘universal’ functionals 

(applicable to the whole nuclear chart).  

• Parameters of the functional fitted to bulk 

properties and masses and radii of finite nuclei.    

• Very precise description of ground state properties 

and collective phenomena. 

• Defined in the intrinsic frame. 

• Spectroscopy and transitions with beyond-mean-

field techniques (GCM, QRPA, …)

Nuclear structure methods with 
phenomenological interactions
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Method: GCM+PNAMP

Coulomb term

spin-orbit

term

density-dependent term

central term

•  Effective nucleon-nucleon interaction: 

Gogny force (D1S-D1M) that is able to describe properly many phenomena along the 
whole nuclear chart. 

First step: Particle Number Projection (before the variation) of HFB-type wave 
functions. 

• Method of solving the many-body problem:

 Second step: Simultaneous Particle Number and Angular Momentum Projection 
(after the variation).

 Third step: Configuration mixing within the framework of the Generator Coordinate 
Method (GCM).

V (1, 2) =
2X

i=1

e�(~r1�~r2)
2/µ2

i (Wi +BiP
� �HiP

⌧ �MiP
�P ⌧ )

+t3(1 + x0P
�)�(~r1 � ~r2)⇢

↵ ((~r1 + ~r2)/2)+iW0(�1 + �2)~k ⇥ �(~r1 � ~r2)~k

+V
Coulomb

(~r
1

,~r
2

)
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1.  Axial states 

2.  Angular momentum

3. Quadrupole deformations

4. Recently: pairing fluctuations 
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Good agreement between experimental and theoretical Q-values, radii and total strength (quenched)

440 T.R. Rodríguez, G. Martinez-Pinedo / Progress in Particle and Nuclear Physics 66 (2011) 436–440

Table 1
Masses, rms charge radii and total Gamow–Teller strengths S�(+) for mother (granddaughter) calculated with Gogny D1S GCM+PNAMP functional
compared to experimental values. Theoretical values for S+/� are quenched by a factor (0.74)2.

Isotope BEth (MeV) BEexp (MeV) [27] Rth (fm) Rexp(fm) [28] Stheo�/+ Sexp�/+
48Ca 420.623 415.991 3.465 3.473 13.55 (14.4 ± 2.2 [29])
48Ti 423.597 418.699 3.557 3.591 1.99 (1.9 ± 0.5 [29])
76Ge 664.204 661.598 4.024 4.081 20.97 (19.89 [30])
76Se 664.949 662.072 4.074 4.139 1.49 (1.45

± 0.07 [31])
82Se 716.794 712.842 4.100 4.139 23.56 (21.91 [30])
82Kr 717.859 714.273 4.130 4.192 1.24
96Zr 829.432 828.995 4.298 4.349 27.63
96Mo 833.793 830.778 4.319 4.384 2.56 (0.29

± 0.08 [32])
100Mo 861.526 860.457 4.372 4.445 27.87 (26.69 [30])
100Ru 864.875 861.927 4.388 4.453 2.48
116Cd 988.469 987.440 4.556 4.628 34.30 (32.70 [30])
116Sn 991.079 988.684 4.567 4.626 2.61 (1.09+0.13

�0.57 [33])
124Sn 1051.668 1049.96 4.622 4.675 40.65
124Te 1051.562 1050.69 4.664 4.717 1.63
128Te 1082.257 1081.44 4.686 4.735 40.48 (40.08 [30])
128Xe 1080.996 1080.74 4.723 4.775 1.45
130Te 1096.627 1095.94 4.695 4.742 43.57 (45.90 [30])
130Xe 1097.245 1096.91 4.732 4.783 1.19
136Xe 1143.333 1141.88 4.756 4.799 46.71
136Ba 1143.202 1142.77 4.786 4.832 0.96
150Nd 1234.512 1237.45 5.034 5.041 50.32
150Sm 1235.936 1239.25 5.041 5.040 1.45
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CL) from HdM [2], IGEX [40], GERDA [5], KamLAND-
Zen [4] and EXO-200 [3].

already reported in previous works within the EDF and
LSSM frameworks [28–31]. On the other hand, we study
the dependence of the NME on the pairing degree of free-
dom fixing the deformations of the initial and final states
at the values where the maximum of the 136Ba collective
wave function is found (�

2

= 0.1) and leaving free the
values for (�, �0) -see Fig. 2(b).

Vanishing matrix elements are obtained for � < 2 and
�0 < 2. However, for �(�0) values larger than 2 the matrix
element grows rapidly with increasing �(�0) in the band
region �0 ⇡ � � 3 and �0 ⇡ � + 3. A correlation between
pairing and NME has been also previously reported in-
directly [21, 28, 30] but it is explicitly shown for the first
time in this work. Furthermore, the distribution is quite
wide meaning that pairing mixing plays an important
role.

The final step in the calculation of the NME is to con-
sider the shape and pairing fluctuations present in the
initial and final wave functions (Fig. 1(c)-(d)). Taking
into account the wave function shapes and looking at
Fig. 2(b) we find that the relevant part is the square de-
fined by the intersection of the horizontal and vertical
lines. Here we see that the pairing fluctuations allow
a large richness of values of the nuclear matrix element
(from zero up to approximately 5) which definitively con-
tribute to the final value.

The results for the most probable candidates to detect
0⌫�� decays are summarized in Table I. We find in the
136Xe decay discussed above a 14% larger NME when
the pairing degree of freedom is explicitly included which
leads to a reduction of the half-life in a factor 0.77. This
result is consistent with exploring regions with larger val-
ues of the NME in the pairing degree of freedom thanks
to the fluctuations in � included in the collective wave
functions. The same e↵ect happens for the rest of can-
didates where the NME obtained including both defor-

mation and pairing fluctuations are increased from 10%
to 40% with respect to the values found by considering
only shape mixings. The 48Ca is the only particular case
where, due to its double magic character, the initial wave
function is significantly moved towards less pairing cor-
relations, thus giving a slightly smaller NME. Except for
this decay, the updated NMEs lead to a reduction of the
predicted half-lives up to factors from 0.81 (82Se) to 0.52
(128Te). Furthermore, a shorter 76Ge half-life as a func-
tion of the 136Xe one is predicted in the region allowed
by HdM, IGEX [40], GERDA, EXO-200 and KamLAND-
Zen experiments, as it is represented in Fig. 3. However,
the HdM claim is incompatible both with the previous
and these new values of the NMEs.
Recently the large values of the Fermi part obtained

within QRPA, IBM and EDF methods compared to the
LSSM ones has been discussed in terms of isospin sym-
metry violation. Hence, spurious contributions to Fermi
-and possibly GT- matrix elements exist in those cases
where the initial and final states are not isospin eigen-
states. In Ref. [41] is shown in the QRPA framework
that correcting the parameters to have the Fermi part of
the 2⌫�� decay equal to zero, the M0⌫

F is reduced but
M0⌫

GT is barely a↵ected. In Table I we show separately
the GT and F components of the NME and we see that
the gain including pairing fluctuations is similar in both
channels. This fact could indicate that the observed in-
crease is not produced by a stronger isospin symmetry
violation. Nevertheless, the e↵ect on the NMEs of the
restoration of the isospin symmetry within this frame-
work is beyond the scope of the present paper but some
work is in progress along this line.
In summary, we have presented calculations for 0⌫��

matrix elements within the EDF framework, including for

Isotope �Q(�2) �Q(�2, �) M0⌫
(�2) M0⌫

(�2, �) Var (%)

T1/2(�2,�)

T1/2(�2)

48
Ca 0.265 0.131 2.3701.9140.456 2.2291.7970.431 -6 1.13

76
Ge 0.271 0.190 4.6013.7150.886 5.5514.4701.082 21 0.69

82
Se -0.366 -0.246 4.2183.3810.837 4.6743.7430.931 11 0.81

96
Zr 2.580 2.628 5.6504.6181.032 6.4985.2961.202 15 0.76

100
Mo 1.879 1.757 5.0844.1490.935 6.5885.3611.227 30 0.60

116
Cd 1.365 1.337 4.7953.9310.864 5.3484.3720.976 12 0.80

124
Sn -0.830 -0.687 4.8083.8930.916 5.7874.6801.107 20 0.69

128
Te -0.564 -0.594 4.1073.0791.027 5.6874.2551.432 38 0.52

130
Te -0.348 -0.628 5.1304.1410.989 6.4055.1611.244 25 0.64

136
Xe -1.027 -0.787 4.1993.6730.526 4.7734.1700.604 14 0.77

150
Nd -0.380 -0.282 1.7071.2780.429 2.1901.6390.551 29 0.61

TABLE I: Di↵erence between theoretical and experimental
Q values and nuclear matrix elements for the most probable
0⌫�� emitters considering shape fluctuations (�2) and both
shape and pairing fluctuations (�2, �) explicitly. Superscript
(underscript) values correspond to the Gamow-Teller (Fermi)
components. The last two columns are the variation of the
NME and half-lives when the additional pairing degree of free-
dom is included.

N. López-Vaquero, T.R.R., J.L. Egido, PRL 111, 142501 (2013)

NME: Summary of the results II
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pn pairing fluctuations
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nuclear radius, inserted by convention to make the ma-
trix element dimensionless. The form factors hF(q) and
hGT(q) contain the vector and axial vector coupling con-
stants, forbidden corrections to the weak current, nucleon
form factors, and the “Argonne” short-range correlation
function [13]. See, e.g., Ref. [14] for details; note that
we absorb the inverse square of the axial-vector coupling
constant into our definition of hF .

To compute the matrix element in Eq. (1) we need
good representations of the initial and final ground states
|Ii and |F i. In this first application to A = 76 nuclei,
we construct the states in a Hilbert space consisting of
36 particles moving freely in the oscillator fp and sdg
shells. Our Hamiltonian has the form

H = h0 �
1X
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gT=1
µ S†
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⌫ Fµ

⌫ , (2)

where h0 contains spherical single particle energies, Q2K

are the components of a quadrupole operator defined in
Ref. [15], and
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In this last equation, c†l is a creation operator, l labels
single-particle multiplets with good orbital angular mo-
mentum, l̂ ⌘

p
2l + 1, S†

µ creates a correlated isovector
pair with orbital angular momentum L = 0 and spin
S = 0 (and with µ labeling the isospin component Tz),
P †
µ creates an isoscalar pn pair with L = 0 and S = 1

(Sz = µ), and the Fµ
⌫ are the components of the Gamow-

Teller operator. Although the Hamiltonian is not fully
realistic, it combines and extends both the SO(8) model
[16, 17] and the pairing-plus-quadrupole model [15, 18],
and contains the most important (collective) parts of
shell-model interaction [19]. We discuss the values of the
couplings in Eq. (2) shortly.

A direct diagonalization in a space this large is not
possible, even with our simple Hamiltonian, and we have
already discussed the drawbacks of the QRPA. We there-
fore turn to the GCM, which has been reviewed in many
places (see, e.g., Ref. [4]) and is useful in very-large-scale
shell-model problems. The procedure is variational, with
an ansatz for the ground state of the form

| i =
X

a1a2...an

f(a1, a2, . . . , an)P |a1, a2, . . . , ani . (4)

Here the kets |a1, a2, . . . , ani are mean-field states —
Slater determinants or, in our case, quasiparticle vacua
— with n expectation values ai specified, P is an operator

that projects onto states with well-defined values for an-
gular momentum and neutron and proton particle num-
bers, and f is a weight function. The starting point, if
we want to include the e↵ects of pn pairing, is a Hartree-
Fock-Bogoliubov (HFB) code that mixes neutrons and
protons in the quasiparticles, i.e. (schematically):

↵† ⇠ upc
†
p + vpcp + unc

†
n + vncn . (5)

The actual equations contain sums over single particle
states as well, so that each of the u’s and v’s above are
replaced by matrices as described, e.g., in Ref. [20].
We use the generalized HFB (neglecting the Fock terms

in this step) without any symmetry restriction to con-
struct a set of quasiparticle vacua that are constrained
to have a particular deformation � (defined here as
0.438 fm2 MeV�1 � hQ20i) and isoscalar-pairing ampli-
tude � = hP0 + P †

0 i /2 (these are the ai in Eq. (4)), that
is, we solve the HFB equations for the Hamiltonian with
linear constraints

H 0 = H��ZNZ��NNN��QQ20�
�P

2

⇣
P0 + P †

0

⌘
, (6)

where the NZ and NN are the proton and neutron num-
ber operators — they are part of the usual HFB min-
imization — and the other �’s are Lagrange multipli-
ers to fix the deformation and isoscalar pairing ampli-
tude. (When computing the Fermi part of the 0⌫��
matrix element we substitute the isovector pn operators
(S0 � S†

0)/2i for (P0 + P †
0 )/2 in Eq. (6).) As already

noted, without the last multiplier the isoscalar pairing
amplitude vanishes unless the strength gT=0 of the cor-
responding interaction is larger than some critical value.
For realistic Hamiltonians that is never the case, hence
the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers
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the need to generate amplitudes by force, as it were.
Having obtained a set of HFB vacua with varying

amounts of axially symmetric deformation and pn pair-
ing, we project the vacua onto states with the correct
number of neutrons and protons and with angular mo-
mentum zero. We then solve the Hill-Wheeler equa-
tion [4], which amounts to diagonalizing H in the space
spanned by our nonorthogonal projected vacua, to deter-
mine the weight function f in Eq. (4).
To carry out a fairly realistic calculation, we need ap-

propriate values for the couplings in the Hamiltonian of
Eq. (2). We determine them by trying to reproduce the
results of calculations with two di↵erent Skyrme interac-
tions (SkO0 [21] and SkM* [22]) in 76Ge and neighbor-
ing nuclei. We first do Skyrme-HFB calculations [23] in
76Ge to determine appropriate volume pairing constants.
We then take single-particle energies for each nucleus,
which we show for SkO0 in Table I, from the results of
constrained HFB calculations for 76Ge and 76Se, which
we temporarily force to be spherical. Next we adjust
the like-particle part of our isovector pairing interaction
(gT=1

1 and gT=1
�1 ) to get the same pairing gaps as the

original Skyrme calculations. The resulting occupation
numbers are close to the spherical Skyrme-HFB numbers

4

TABLE II. The 0⌫�� matrix element M0⌫ for the decay of
76Ge in a simplified calculation that neglects deformation, at
various levels of approximation. The first column contains the
source of the couplings in Eq. (2), the second the matrix ele-
ment when the spin-isospin and isoscalar pairing interactions
are absent, the third the matrix element with only isoscalar
pairing missing, the fourth the full GCM result, and the last
the result of the QRPA with the same Hamiltonian (except
for a slightly modified gT=0). The matrix elements in paren-
theses are obtained by quenching our B(GT+).

Skyrme no gph, g
T=0 no gT=0 full QRPA

SkO0 14.0 9.5 5.4 (5.4) 5.6 (5.0)

SkM* 11.8 9.4 4.1 (2.8) 3.5 (2.5)

called gpp when divided by ḡT=1) in exactly the same
way. The values we obtain are only slightly di↵erent.
The last column of Table II contains the QRPA 0⌫��
matrix elements. They are fairly close to those of the
GCM calculation, but much more sensitive to gT=0.

To clarify this last statement, we show the GCM and
QRPA matrix elements as functions of gT=0/ḡT=1 in Fig.
2. The QRPA curves lie slightly above their GCM coun-
terparts until gT=0/ḡT=1 reaches a critical value slightly
larger than 1.5; at that point a mean-field phase tran-
sition from an isovector pair condensate to an isoscalar
condensate causes the famous QRPA “collapse.” The col-
lapse is spurious, as the GCM results show. Its presence
in mean-field theory makes the QRPA unreliable near the
critical point. It is actually a bit of a coincidence that
the QRPA matrix elements in the table are as close as
they are to those of the GCM; a small change in gT=0

would a↵ect them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather
than 1.0 does not have a huge e↵ect on the 0⌫�� matrix
element). The GCM result is not only better behaved
near the critical point but also, we believe, quite accu-
rate. In the SO(8) model used to test many-body meth-
ods in �� decay many times, the GCM result is nearly
exact for all gT=0. That is not the case for extensions of
the QRPA that attempt to ameliorate its shortcomings
[32, 33], though some of those work better around the
phase transition than others.

To show why the GCM behaves well, we display
in the bottom right part of Fig. 3 the quantity
N�IN�F h�F | PF M̂0⌫PI |�Ii, where |�Ii is a quasiparti-
cle vacuum in 76Ge constrained to have isoscalar pairing
amplitude �I , �F is an analogous state in 76Se, PI , PF

project onto states with angular momentum zero and the
appropriate values of Z and N , and N�I ,N�F normalize
the projected states. This quantity is the contribution to
the 0⌫�� matrix element from states with particular val-
ues of the initial and final isoscalar pairing amplitudes.
The contribution is positive around zero condensation in
the two nuclei and negative when the final pairing ampli-
tude is large. Thus the GCM states must contain compo-
nents with significant pn pairing when gT=0 is near its fit
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M
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gT=0/ḡT=1
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QRPA SkO0
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QRPA SkM*

FIG. 2. (Color online.) Dependence of the GCM (solid) and
QRPA (dashed) 0⌫�� matrix elements on the strength gT=0

of the isoscalar pairing interaction. The red (upper) and blue
(lower) lines of each type correspond to the interaction pa-
rameters extracted from SkO0 and SkM*. The divergence in
the QRPA near gT=0/ḡT=1 = 1.5 is discussed in the text.

value. The appearance of this plot is di↵erent from those
in which the matrix element is plotted versus initial and
final deformation [6–8]. Here the matrix element is small
or negative even if the initial and final pairing ampli-
tudes have the same value, as long as that value is large.
The behavior reflects the qualitatively di↵erent e↵ects of
isovector and isoscalar pairs on the matrix element [3],
e↵ects that have no analog in the realm of deformation.
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vacua with di↵erent values of the initial and final isoscalar
pairing amplitudes �I and �F , from the SkO0-based interac-
tion (see text). Top and bottom left: Square of collective
wave functions in 76Ge and 76Se.

N. Hinohara and J. Engel, PRC 031031(R) (2014)
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spherical value when 
shape mixing is included 
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FIG. 5. (Color online) Dependence of the calculated matrix
elements on the number of valence neutron pairs in the GS scheme.
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element M (0ν).

that annihilates a correlated pair of neutrons and creates a
correlated pair of protons. This operator can be written, to a
good approximation, as [23]

P
(0)
+πP

(0)
−ν = απανs

†
π (%π − Nπ )1/2 (%ν − Nν)1/2 s̃ν, (42)

where %π and %ν are the pair degeneracies of the major shells
and Nπ and Nν are the boson numbers (numbers of pairs). The
matrix elements of the operator in Eq. (42) are

⟨Nπ + 1, Nν − 1
∣∣P (0)

+πP
(0)
−ν

∣∣Nπ , Nν⟩

= απαν

√
(Nπ + 1)(%π − Nπ )(%ν − Nν + 1)Nν . (43)

The coefficients απ ,αν are characteristic quantities of each
major shell. The behavior (43) is shown in Fig. 6. (This
is slightly different from the realistic calculation of Fig. 5
obtained with single-particle levels for protons slightly differ-
ent than for neutron.) Equation (43) provides a simple estimate
of M (0ν). As an example of application of Eq. (43), consider the
ratio 128

52 Te76/
130
52 Te78. For Te, protons and neutrons are in the

50–82 shell, %π = %ν = 16 and Nπ = 1 and Nν = 13(128Te),
Nν = 14 (130Te). From (43) one obtains

M (0ν)(128Te)
M (0ν)(130Te)

= 1.11. (44)

The result of our calculation (IBM-2 in Table IV) gives
M (0ν)(128Te)/M (0ν)(130Te) = 4.517

4.059 = 1.11. This calculation
includes FSC and SRC effects. Formula (43), derived in GS
and spherical nuclei, appears also to be valid for the full
calculation (IBM-2) and weakly deformed nuclei. The analogy
between neutrinoless double-β decay and 2n and 2p transfer
suggests that the physical decay occurs in a correlated pair
and is thus enhanced by pairing correlations. It also allows a
model-independent prediction for ratios of matrix elements,
by resorting to experimental data for 2n (and 2p) transfer
reactions

A
ZXN (p, t)AZXN−2. (45)

The intensities of these reactions are proportional to the square
of the matrix elements of the operator P

(0)
−ν and thus, for fixed

proton number, to the square of the matrix elements M (0ν). As
reported in Ref. [23], the experimental two-neutron transfer
reactions in Te appear to be well described by Eq. (43).

The relation described above is also well satisfied by
QRPA. For example, from Table IV, row QRPA, we have
M (0ν)(128Te)/M (0ν)(130Te) = 3.770

3.338 = 1.13.
We suggest that the relation

M (0ν) ≃ απαν

√
Nπ + 1

√
Nν

√
%π − Nπ

√
%ν − Nν + 1

(46)

be used to estimate M (0ν) for spherical and weakly deformed
nuclei with A >∼ 60. By fitting our calculation in 76Ge with (43)
we find απαν = 0.186 for protons and neutrons in the 28–
50 shell and by fitting in 128Te we find απαν = 0.114 for
protons and neutrons in the 50–82 shell. These values are used
in Fig. 6, where also the two points 128Te and 130Te are shown.

As mentioned above, this estimate applies to spherical
and weakly deformed nuclei. For strongly deformed nuclei,
it should be modified as discussed in Ref. [23].

C. Effects of deformation

The effects of deformation can be easily seen within the
microscopic IBM framework. In spherical nuclei, the ground
state is composed of S pairs (s bosons) and is well described
by generalized seniority. As the deformation increases, the
number of d-bosons in the ground state increases, reaching
a maximum of (2/3)(Nπ + Nν) in SU(3) nuclei. The effects
of the deformation are the differences between the rows GS
and IBM-2 in Table I. For the nuclei described in this article,
the effect is a reduction by about 20%. The advantage of the
method discussed in this article is that one can do calculations
in any nucleus with A >∼ 70. For semimagic nuclei, one can
use GS, whereas for all others one can use IBM-2. To study
further the effects of strong defomation, we are planning to
calculate the matrix elements in the decay of 160Gd, 232Th, and
238U, for which we need first to obtain realistic wave functions
that describe accurately all observed properties. The results of
the calculation will be presented in a forthcoming publication.

044301-9

J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009)

- Shell effects associated to the filling 
of neutrons in the corresponding 
sub-shells. Consistent with seniority 
model. 

- Large enhancement of the NME for 
the mirror decay A=98.2d5/2 1g7/2-2d3/2-3s1/2 1h11/2

T.R.R., Martínez-Pinedo, PLB 719, 174 (2013)

NME: ACd→ASn Shell Effects
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- Reduction of the NME with respect 
to the spherical value when shape 
mixing is included

- Larger reduction when the 
difference in deformation is larger 

- Larger pairing correlations in 
mother/daughter nuclei produces 
larger NMEs.


- Closely related to shell effects

T.R.R., Martínez-Pinedo, PLB 719, 174 (2013)
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NME: pf-shell

- Same pattern in spherical EDF, seniority 0 Shell Model, and 
Generalized Seniority model (overall scale?) 


- What is the effect of including more correlations?

Where do the differences come from?

CORRELATIONS AND NEUTRINOLESS ββ DECAY . . . PHYSICAL REVIEW C 90, 024311 (2014)
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FIG. 1. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b) and Cr→Fe (c) 0νββ decays,

calculated with shell model (SM) and energy density functional (EDF) methods. The D1S EDF interaction is used (circles). In the SM case,
the KB3G (squares) and GXPF1A (lozenges) effective interactions are employed.

Refs. [31,50]. Maxima are more marked in SM calculations,
where the initial and final states share the same isospin
quantum number, T . In the SM case the two states are exactly
isospin-symmetric, because Coulomb and isospin-symmetry-
breaking terms in the nuclear interaction are neglected, but the
overlap between mirror initial and final states is also maximal
in the EDF approach, which includes the Coulomb term. For
EDF calculations, however, T is not a good quantum number.

The configuration space and nuclear correlations included
in SM and EDF calculations are very different, with the SM
being able to take into account more general correlations but
in a rather limited valence space. Regarding the size of the
configuration space it is important to note that in the pf shell
the SM includes all orbitals with their corresponding spin-
orbit partner. This is relevant because in the 0νββ decay of
heavier nuclei, some spin-orbit partners are not included in
SM calculations, and this has been pointed out as a possible
cause of the relatively small SM NMEs. The SM calculations
analyzed in this work are thus free from this shortcoming.

We can get more insight in the comparison of SM and
EDF NMEs by simplifying the nuclear structure correlations
present in the initial and final states of the 0νββ decay. Figure 2
shows M0ν

GT calculated with the same transition operator as
Fig. 1, but with simplified nuclear states. For the EDF, spherical
symmetry is assumed. In the SM case, only configurations
with zero seniority (s = 0) are permitted, this is, protons and
neutrons are coupled in J = 0 pairs; no proton-neutron J =
0 pairs are included. We observe that the GT parts of the
NMEs calculated in these simplified schemes are significantly
larger than in the full calculation for both approaches, with a

striking agreement between SM and EDF NMEs. Indeed SM
GXPF1A calculations lie within 10% of EDF values, while
SM KB3G calculations are about 25% larger. The difference
between the two SM results stems from the different J = 0,
T = 1 pairing. As shown in Fig. 1, this difference between
effective interactions is washed out when full calculations are
performed. The agreement between SM and EDF NMEs is in
strong contrast with the full NME calculations shown in Fig. 1,
where SM NMEs were half of the EDF values.

This implies that the spherical EDF and seniority-zero
SM calculations, while conceptually very different, capture
approximately the same physics, leaving out the nuclear
structure correlations that reduce the 0νββ decay NMEs.
Some of these have been identified in Refs. [15,17,31] as the
correlations associated with high-seniority components in the
SM, and collective deformation effects in EDF calculations.
High seniority components have been also studied within the
QRPA in Ref. [21].

Figure 2 also shows that the trends followed by the NMEs
calculated in both approaches are very similar, and indeed
they follow to a good approximation the generalized seniority
scheme in a single shell [51]:

M0ν
GT ≃ απαν

√
Nπ + 1

√
%π − Nπ

√
Nν

√
%ν − Nν + 1,

(6)

where Nπ(ν) is the number of proton (neutron) pairs in the shell,
%π(ν) the pair degeneracy and απ(ν) coefficients characteristic
of a major shell. Deviations from Eq. (6) are due to nonperfect
shell closures and the A dependence in the neutrino potentials.
The “inverted parabola” from initial number of neutrons
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FIG. 2. (Color online) Gamow-Teller part of the nuclear matrix element, M0ν
GT, for Ca→Ti (a), Ti→Cr (b), and Cr→Fe (c) 0νββ decays,

with seniority-zero shell model (SM) and spherical energy density functional (EDF) states. Interactions are as in Fig. 1.

024311-3

20 24 28 32 36
Number of initial neutrons

1

2

3

4

5

6

7

M
0i
G
T

Ca Ti Cr
Fe

20 24 28 32 36
Number of initial neutrons

 

Ca Ti Cr
Fe

20 24 28 32 36
Number of initial neutrons

 

Ca,Fe (1)

Ti,Cr (2)

Ca,Fe (2)

Ti,Cr (1)
(a) (b) (c)

 EDF sph SM sen=0 GS
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- NMEs are reduced with respect to the 
spherical value when correlations are included.


- The biggest reduction is produced by angular 
momentum restoration and configuration 
mixing produces an increase of the NME.


- Cross-check nuclei: 42Ca, 50Ca, 56Fe J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).
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NME: pf-shell
CORRELATIONS AND NEUTRINOLESS ββ DECAY . . . PHYSICAL REVIEW C 90, 024311 (2014)

corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.

024311-5

- The biggest reduction (in Shell model 
calculations) is produced by including 
higher seniority components in the 
nuclear wave functions.


- Isospin projection is relevant for the 
Fermi part of the NME and less 
important for the Gamow-Teller part.


- Isospin projection tends to reduce the 
NME.


- EDF does not include properly those 
higher seniority components, specially 
in spherical nuclei.


- p-n pairing effects could also be 
important in the reduction of the NME.

J. Menéndez, T. R. R., A. Poves, G. Martínez-Pinedo, PRC 90, 024311 (2014).
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FIG. 4. (Color online) Multipole decomposition of the matrix
element M0ν

F . The results with the old and new parametrizations are
compared. Note the dominant effect for the 0+ multipole and the
relatively small effects for the other multipoles. This is the case of
76Ge.

From the tables one can see that the new parametrization,
leading to M2ν

F = 0.0, leads to a substantial reduction of the
M0ν

F component of M0ν and an overall ∼10%–20% reduction
of the final M0ν nuclear matrix elements. It is encouraging
that both variants of the M0ν matrix elements for 48Ca are now
rather close to the results of nuclear shell model evaluation.
(With gA = 1.27 our M0ν values are 0.54 in the listed case
and 0.71 in the variant where the even-odd mass differences
are treated as arising from pairing, both with the Argonne V18
potential and 0.59 (0.77) with the CD-Bonn potential, while
the shell model values are 0.59 in Ref. [18] and 0.82 (0.90) for
the Argonne V18 (CD-Bonn) potential in Ref. [19].) Note that
only in the case of 48Ca is the full oscillator pf shell included
and hence the Ikeda sum rule is fulfilled in the nuclear shell
model treatment. We are, naturally, well aware of the fact that
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FIG. 5. (Color online) Nuclear matrix elements M0ν evaluated
with the new parametrization developed in this work (filled squares)
compared with the old method (gT =1

pp = gT =0
pp ≡ gpp) (empty circles).

This is a QRPA with gA = 1.27 and a large-size single-particle level
scheme, as in Table I, evaluation using the Argonne V18 potential.

applying the QRPA in the case of 48Ca is questionable; our
results should be treated with that in mind.

Finally, in order to better visualize the effect of the new
parametrization of the particle-particle interaction, we show
in Fig. 4 an example of the multipole decomposition of the
matrix element M0ν

F . One can see there that the contribution of
the intermediate multipole 0+ is drastically reduced with our
choice of gT =1

pp , while all the other multipoles are affected only
slightly or not at all. This is, in some sense, analogous to the
situation with M0ν

GT, where the parameter gT =0
pp affects mostly

the intermediate 1+ states, while all the other multipolarities
are affected much less.

We compare in Fig. 5 the M0ν matrix elements for all
considered nuclei evaluated with the old and new parametriza-
tions of gpp. The smaller values of M0ν in 48Ca, 166Cd, 124Sn,
136Xe, and to some extent also in 96Zr are related to the magic
or semimagic nucleon number in these nuclei, and thus to the
reduced pairing correlations in them.

V. COMPARISON OF THE χF VALUES EVALUATED
BY DIFFERENT METHODS

As we argued in this work, the result of the new parametriza-
tion of the particle-particle interaction, which partially restores
isospin symmetry and leads to the correct M2ν

F = 0 value,
is the reduction of the Fermi part M0ν

F of the 0νββ nuclear
matrix element. At the same time, the largest component of
that matrix element, M0ν

GT, remains essentially unaffected. One
can see that most clearly by considering the quantity χF , the
ratio M0ν

F /M0ν
GT.

In Table IV we compare the χF values obtained with
different methods. [An analogous table, naturally without our
new results, appears in Ref. [20] in their Table VII. However,
as we already mentioned, their definition of χF contains an
extra factor (gV /gA)2.] One can see in Table IV that in the
nuclear shell model, and in our QRPA calculation with the
new parametrization of gpp, the χF values are substantially
smaller than in the previous approaches. (In IBM-2 the χF are
very small when neutrons and protons are in different shells.
That is an artifact of the model where only one shell in each
system is included.)

In the shell model, and in our new QRPA calculations, the
χF values are relatively close to −1/3, the value one would
obtain in pure S = 0 states. However, in the shell model the
χF values are systematically smaller than in our version of
the QRPA. Why this is so remains to be understood. (To be
really precise, χF = −1/3 would arise for pure S = 0 when
the higher order terms in the weak current are absent, when
in the nucleon form factor the cutoff parameters for the vector
and axial vector currents are the same, and the average energies
Ē are chosen to be the same in both neutrino potentials.) As
we pointed out before, while the S = 0 component is large,
the other parts, in particular S = 1, are clearly present.

We may notice that the QRPA values of χF are always
smaller with the quenched value gA = 1.0 compared to the
unquenched value gA = 1.27. That trend continues when the
amount of quenching is increased, e.g., to gA = 0.8 where χF

values are really quite close to −1/3. However, the question

045501-8
F. Simkovic et al, PRC 7, 045501 (2013).
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TABLE I. Proton and neutron occupation numbers of nuclei 76Ge
and 76Se. Experiment from Refs. [1,2] vs theoretical results, obtained
for the gcn28.50 and rg interactions.

1p1/2 + 1p3/2 0f5/2 0g9/2

Neutrons
76Ge (exp) 4.87 ± 0.20 4.56 ± 0.40 6.48 ± 0.30
76Ge (gcn28.50) 5.19 5.02 5.79
76Ge (rg) 4.83 4.78 6.39
76Se (exp) 4.41 ± 0.20 3.83 ± 0.40 5.80 ± 0.30
76Se (gcn28.50) 4.86 4.54 4.60
76Se (rg) 4.08 4.06 5.86

Protons
76Ge (exp) 1.77 ± 0.15 2.04 ± 0.25 0.23 ± 0.25
76Ge (gcn28.50) 1.70 1.90 0.40
76Ge (rg) 1.34 2.00 0.66
76Se (exp) 2.08 ± 0.15 3.16 ± 0.25 0.84 ± 0.25
76Se (gcn28.50) 2.74 2.27 0.99
76Se (rg) 2.12 2.79 1.08

76Ge and 76Se, the difference between the ISM and QRPA
NME values diminishes. Notice however that expressing the
effects in percentages may be misleading. Indeed, in the
ISM case the NME increases by 0.45 while in the two
QRPA calculations the reductions amount to 1.25 and 0.64,
respectively.

The above analysis points out the relevance of occupation
numbers in order to obtain a reliable result for the NME of
the 0νββ decay. However, some caution needs to be taken
regarding this point. For instance, we have observed that,
performing calculations with truncations in the maximum
seniority allowed in the wave functions (sm), the occupancies
obtained are essentially independent of sm, while the NME
is strongly reduced when high order seniority components
are allowed in the wave functions. This can be observed
in Table III. Therefore, it is concluded that occupation

TABLE II. Values of the NME (M0νββ ) for the 76Ge → 76Se decay
for ISM and QRPA calculations. QRPA(JY)-WS and QRPA(TU)-WS
are the original QRPA calculations from Refs. [7] for Jyväskylä
and [8] for Tübingen. ADJ-WS are the calculations using a Woods-
Saxon potential adjusted to reproduce the experimental occupancies,
collected from Refs. [5] (JY) and [6] (TU). UCOM type SRC’s
are considered. All results compared with r0 = 1.2 fm and a
nonquenched axial coupling.

M0νββ GCN WS RG ADJ-WS

ISM 2.81 3.26
QRPA(JY) 5.36 4.11
QRPA(TU) 5.07–6.25 4.59–5.44

numbers by themselves do not fix the NME value, even
though they are presumably necessary to get a sensible
result.

In the same fashion, it is interesting to look at the variation
of the nuclear matrix element of the 2νββ transition. Since the
parameter gpp is fixed in QRPA calculations in order to repro-
duce the experimental 2νββ matrix element, in that case no
prediction is possible. On the contrary, within the ISM we can
make this comparison. The result is that this matrix element is
moderately enhanced as was the case of the 0νββ decay, chang-
ing from 0.32 MeV−1 obtained with the gcn28.50 interaction
up to 0.41 MeV−1 when rg is employed. They are to be com-
pared with the experimental number 0.14 ± 0.01 MeV−1 [9].
Beforehand, these theoretical values have to be quenched
in order to take into account the valence space trunca-
tion, which effectively quenches the Gamow-Teller strength.
This quenching factor must lie between 0.7 for 0h̄ω
spaces and 0.53 for the similar r4h valence space. Tak-
ing 0.6 we get 0.12 and 0.15 MeV−1, very close to the
experiment.

In our 0νββ results, however, we have not included any
quenching. The reason for that lies in the difference between
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FIG. 1. (Color online) Comparison between
experimental and theoretical occupation num-
bers for A = 76. Experimental values are from
Refs. [1,2]. The ISM results correspond to the
gcn28.50 (GCN) and rg (RG) interactions. The
QRPA standard numbers, TU(WS) and JY(WS)
give the occupancies at the BCS level. The
QRPA occupancies with adjusted single particle
energies are given at the BCS level in the case
of JY(ADJ) and at QRPA level for TU(ADJ).
JY and TU results from Refs. [5] and [6],
respectively. The experimental error bars are also
shown.
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TABLE I. Proton and neutron occupation numbers of nuclei 76Ge
and 76Se. Experiment from Refs. [1,2] vs theoretical results, obtained
for the gcn28.50 and rg interactions.

1p1/2 + 1p3/2 0f5/2 0g9/2

Neutrons
76Ge (exp) 4.87 ± 0.20 4.56 ± 0.40 6.48 ± 0.30
76Ge (gcn28.50) 5.19 5.02 5.79
76Ge (rg) 4.83 4.78 6.39
76Se (exp) 4.41 ± 0.20 3.83 ± 0.40 5.80 ± 0.30
76Se (gcn28.50) 4.86 4.54 4.60
76Se (rg) 4.08 4.06 5.86

Protons
76Ge (exp) 1.77 ± 0.15 2.04 ± 0.25 0.23 ± 0.25
76Ge (gcn28.50) 1.70 1.90 0.40
76Ge (rg) 1.34 2.00 0.66
76Se (exp) 2.08 ± 0.15 3.16 ± 0.25 0.84 ± 0.25
76Se (gcn28.50) 2.74 2.27 0.99
76Se (rg) 2.12 2.79 1.08

76Ge and 76Se, the difference between the ISM and QRPA
NME values diminishes. Notice however that expressing the
effects in percentages may be misleading. Indeed, in the
ISM case the NME increases by 0.45 while in the two
QRPA calculations the reductions amount to 1.25 and 0.64,
respectively.

The above analysis points out the relevance of occupation
numbers in order to obtain a reliable result for the NME of
the 0νββ decay. However, some caution needs to be taken
regarding this point. For instance, we have observed that,
performing calculations with truncations in the maximum
seniority allowed in the wave functions (sm), the occupancies
obtained are essentially independent of sm, while the NME
is strongly reduced when high order seniority components
are allowed in the wave functions. This can be observed
in Table III. Therefore, it is concluded that occupation

TABLE II. Values of the NME (M0νββ ) for the 76Ge → 76Se decay
for ISM and QRPA calculations. QRPA(JY)-WS and QRPA(TU)-WS
are the original QRPA calculations from Refs. [7] for Jyväskylä
and [8] for Tübingen. ADJ-WS are the calculations using a Woods-
Saxon potential adjusted to reproduce the experimental occupancies,
collected from Refs. [5] (JY) and [6] (TU). UCOM type SRC’s
are considered. All results compared with r0 = 1.2 fm and a
nonquenched axial coupling.

M0νββ GCN WS RG ADJ-WS

ISM 2.81 3.26
QRPA(JY) 5.36 4.11
QRPA(TU) 5.07–6.25 4.59–5.44

numbers by themselves do not fix the NME value, even
though they are presumably necessary to get a sensible
result.

In the same fashion, it is interesting to look at the variation
of the nuclear matrix element of the 2νββ transition. Since the
parameter gpp is fixed in QRPA calculations in order to repro-
duce the experimental 2νββ matrix element, in that case no
prediction is possible. On the contrary, within the ISM we can
make this comparison. The result is that this matrix element is
moderately enhanced as was the case of the 0νββ decay, chang-
ing from 0.32 MeV−1 obtained with the gcn28.50 interaction
up to 0.41 MeV−1 when rg is employed. They are to be com-
pared with the experimental number 0.14 ± 0.01 MeV−1 [9].
Beforehand, these theoretical values have to be quenched
in order to take into account the valence space trunca-
tion, which effectively quenches the Gamow-Teller strength.
This quenching factor must lie between 0.7 for 0h̄ω
spaces and 0.53 for the similar r4h valence space. Tak-
ing 0.6 we get 0.12 and 0.15 MeV−1, very close to the
experiment.

In our 0νββ results, however, we have not included any
quenching. The reason for that lies in the difference between
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FIG. 1. (Color online) Comparison between
experimental and theoretical occupation num-
bers for A = 76. Experimental values are from
Refs. [1,2]. The ISM results correspond to the
gcn28.50 (GCN) and rg (RG) interactions. The
QRPA standard numbers, TU(WS) and JY(WS)
give the occupancies at the BCS level. The
QRPA occupancies with adjusted single particle
energies are given at the BCS level in the case
of JY(ADJ) and at QRPA level for TU(ADJ).
JY and TU results from Refs. [5] and [6],
respectively. The experimental error bars are also
shown.
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Fitting the underlying (WS) mean field to 
reproduce the experimental occupation 
numbers reduces the pnQRPA NMEs.



Hirschegg 2015 | Present status and future perspectives for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

2. 0νββ transition operator 3. Nuclear structure effects1. Introduction 4. Summary and outlook

Occupation numbers

 
0

5

10

Ne
ut

ro
n 

Va
ca

nc
y

 

 

 
0

5

10

Pr
ot

on
 O

cc
up

an
cy

 

 

E
X

P

Q
R

PA
 (T

U
)

IS
M

 (G
C

N
)

IS
M

 (R
G

)

E
D

F(
D

1S
)

E
X

P

Q
R

PA
 (T

U
)

IS
M

 (G
C

N
)

IS
M

 (R
G

)

E
D

F(
D

1S
)

E
X

P

Q
R

PA
 (T

U
)

IS
M

 (G
C

N
)

IS
M

 (R
G

)

E
D

F(
D

1S
)

E
X

P

Q
R

PA
 (T

U
)

IS
M

 (G
C

N
)

IS
M

 (R
G

)

E
D

F(
D

1S
)

Protons Protons

Neutrons Neutrons76Ge

76Ge

76Se

76Se

1p

0f5/2

0g9/2

1p
0f5/2

0g9/2

1p
0f5/2

0g9/2

1p

0f5/2

0g9/2

PRELIMINARY



Hirschegg 2015 | Present status and future perspectives for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

2. 0νββ transition operator 3. Nuclear structure effects1. Introduction 4. Summary and outlook

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
`2

-20

-15

-10

-5

0

 ¡
s.
p.

 (M
eV

) 

28

2p3/2

1f5/2

2p1/2

2d5/2

3s1/2

1g7/2

2d3/2

36

50

1g9/2

36

38

38

40 40

40

50

52

52

60

56

54
56

58
60

62

58
54

42,44,46,48

42

3434

32

✓ The spherical wave function defines the spherical 
(“shell model like”) orbits.

-0.5 0 0.5
β2

0

5

10

15

E n
or
m

 (M
eV

)

J=0
PN-VAP

86Kr

Occupation numbers

T. R. R., in preparation



Hirschegg 2015 | Present status and future perspectives for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

2. 0νββ transition operator 3. Nuclear structure effects1. Introduction 4. Summary and outlook

✓ The spherical wave function defines the spherical 
(“shell model like”) orbits.

-0.5 0 0.5
β2

0

5

10

15

E n
or
m

 (M
eV

)

J=0
PN-VAP

86Kr

-0.5 0 0.5
β2

0

2

4

6

8

10

N
um

be
r o

f p
ar

tic
le

s

1s-1p-1d-2s (holes)
1f7/2
2p3/2

1f5/2
2p1/2

1g9/2
above 1g9/2

(a) protons

-0.5 0 0.5
β2

 

1spdf-2sp (holes)
1g9/2
2d5/2
3s1/2

1g7/2
2d3/2
1h11/2

above 1h11/2

(b) neutrons

✓ The spherical shells are filled in or emptying depending 
on the deformation.

✓ The final occupation of each shell 
corresponding to a many-body state is 
computed with the GCM wave 
functions.

 
0
2
4
6
8

10

N
um

be
r o

f p
ar

tic
le

s

(a) protons

 

 

(b) neutrons

ho
les

 1
sp
d-

2s

1f7
/2

2p
3/

2

1f5
/2

2p
1/

2

1g
9/

2
ab

ov
e 

1g
9/

2

ho
les

 1
sp
df

-2
sp

1g
9/

2

2d
5/

2

1s
1/

2

2g
7/

2

1d
3/

2

ab
ov

e 
1h

11
/2

1h
11

/2

T. R. R., in preparation

Occupation numbers



Hirschegg 2015 | Present status and future perspectives for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

2. 0νββ transition operator 3. Nuclear structure effects1. Introduction 4. Summary and outlook

✓ The spherical wave function defines the spherical 
(“shell model like”) orbits.

96Kr

✓ The spherical shells are filled in or emptying depending 
on the deformation.

✓ The final occupation of each shell 
corresponding to a many-body state is 
computed with the GCM wave 
functions.

ho
les

 1
sp
d-

2s

1f7
/2

2p
3/

2

1f5
/2

2p
1/

2

1g
9/

2
ab

ov
e 

1g
9/

2

ho
les

 1
sp
df

-2
sp

1g
9/

2

2d
5/

2

1s
1/

2

2g
7/

2

1d
3/

2

ab
ov

e 
1h

11
/2

1h
11

/2

-0.5 0 0.5
β2

0

5

10

15

E n
or
m

 (M
eV

)

J=0
PN-VAP

-0.5 0 0.5
β2

0

2

4

6

8

10

N
um

be
r o

f p
ar

tic
le

s

1s-1p-1d-2s (holes)
1f7/2
2p3/2

1f5/2
2p1/2

1g9/2
above 1g9/2

(a) protons

-0.5 0 0.5
β2

 

1spdf-2sp (holes)
1g9/2
2d5/2
3s1/2

1g7/2
2d3/2
1h11/2

above 1h11/2

(b) neutrons

 
0
2
4
6
8

10

N
um

be
r o

f p
ar

tic
le

s

(a) protons

 

 

(b) neutrons

T. R. R., in preparation

Occupation numbers



Hirschegg 2015 | Present status and future perspectives for neutrinoless double beta decay nuclear matrix elements | Tomás R. Rodríguez

2. 0νββ transition operator 3. Nuclear structure effects1. Introduction 4. Summary and outlook

Summary

๏ Experimental data are already able to constrain very long lower 
limit half-lives (we cross fingers for a positive signal soon!). 

๏ 0νββ preferred mechanism is the exchange of a light Majorana 
neutrino but some other mechanisms are being considered too. 

๏ NMEs differ a factor of three between the different methods but 
we need to understand which are the pros/cons of each method 
to provide reliable numbers (precision vs. accuracy). 

๏ Nuclear physics aspects like deformation, pairing, shell effects, 
etc., are understood similarly within different approaches.  

๏ Systematic comparisons between ISM/EDF methods have been 
performed.
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TABLE II. The 0⌫�� matrix element M0⌫ for the decay of
76Ge in a simplified calculation that neglects deformation, at
various levels of approximation. The first column contains the
source of the couplings in Eq. (2), the second the matrix ele-
ment when the spin-isospin and isoscalar pairing interactions
are absent, the third the matrix element with only isoscalar
pairing missing, the fourth the full GCM result, and the last
the result of the QRPA with the same Hamiltonian (except
for a slightly modified gT=0). The matrix elements in paren-
theses are obtained by quenching our B(GT+).

Skyrme no gph, g
T=0 no gT=0 full QRPA

SkO0 14.0 9.5 5.4 (5.4) 5.6 (5.0)

SkM* 11.8 9.4 4.1 (2.8) 3.5 (2.5)

called gpp when divided by ḡT=1) in exactly the same
way. The values we obtain are only slightly di↵erent.
The last column of Table II contains the QRPA 0⌫��
matrix elements. They are fairly close to those of the
GCM calculation, but much more sensitive to gT=0.

To clarify this last statement, we show the GCM and
QRPA matrix elements as functions of gT=0/ḡT=1 in Fig.
2. The QRPA curves lie slightly above their GCM coun-
terparts until gT=0/ḡT=1 reaches a critical value slightly
larger than 1.5; at that point a mean-field phase tran-
sition from an isovector pair condensate to an isoscalar
condensate causes the famous QRPA “collapse.” The col-
lapse is spurious, as the GCM results show. Its presence
in mean-field theory makes the QRPA unreliable near the
critical point. It is actually a bit of a coincidence that
the QRPA matrix elements in the table are as close as
they are to those of the GCM; a small change in gT=0

would a↵ect them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather
than 1.0 does not have a huge e↵ect on the 0⌫�� matrix
element). The GCM result is not only better behaved
near the critical point but also, we believe, quite accu-
rate. In the SO(8) model used to test many-body meth-
ods in �� decay many times, the GCM result is nearly
exact for all gT=0. That is not the case for extensions of
the QRPA that attempt to ameliorate its shortcomings
[32, 33], though some of those work better around the
phase transition than others.

To show why the GCM behaves well, we display
in the bottom right part of Fig. 3 the quantity
N�IN�F h�F | PF M̂0⌫PI |�Ii, where |�Ii is a quasiparti-
cle vacuum in 76Ge constrained to have isoscalar pairing
amplitude �I , �F is an analogous state in 76Se, PI , PF

project onto states with angular momentum zero and the
appropriate values of Z and N , and N�I ,N�F normalize
the projected states. This quantity is the contribution to
the 0⌫�� matrix element from states with particular val-
ues of the initial and final isoscalar pairing amplitudes.
The contribution is positive around zero condensation in
the two nuclei and negative when the final pairing ampli-
tude is large. Thus the GCM states must contain compo-
nents with significant pn pairing when gT=0 is near its fit
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M
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gT=0/ḡT=1
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QRPA SkO0
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FIG. 2. (Color online.) Dependence of the GCM (solid) and
QRPA (dashed) 0⌫�� matrix elements on the strength gT=0

of the isoscalar pairing interaction. The red (upper) and blue
(lower) lines of each type correspond to the interaction pa-
rameters extracted from SkO0 and SkM*. The divergence in
the QRPA near gT=0/ḡT=1 = 1.5 is discussed in the text.

value. The appearance of this plot is di↵erent from those
in which the matrix element is plotted versus initial and
final deformation [6–8]. Here the matrix element is small
or negative even if the initial and final pairing ampli-
tudes have the same value, as long as that value is large.
The behavior reflects the qualitatively di↵erent e↵ects of
isovector and isoscalar pairs on the matrix element [3],
e↵ects that have no analog in the realm of deformation.
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FIG. 3. (Color online.) Bottom right:

N�IN�F h�F | PF M̂0⌫PI |�Ii for projected quasiparticle
vacua with di↵erent values of the initial and final isoscalar
pairing amplitudes �I and �F , from the SkO0-based interac-
tion (see text). Top and bottom left: Square of collective
wave functions in 76Ge and 76Se.
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corresponding PES to calculate the NMEs (EDFmin). Finally,
the full EDF calculation uses self-consistent shape mixing of
the collective states, within the GCM framework, to obtain the
NMEs (EDFfull).

Figure 3 shows that the M0ν
GT pattern found with EDF

spherical states disappears when PES minima are used.
Moreover, the NMEs are significantly reduced when the
deformation effects are included. Furthermore, the full EDF
NMEs roughly follow the trends of the PES minima solution,
and configuration (shape) mixing only produces a shift to
larger values, which is larger in the Ti and Cr decays after
the neutron f7/2 orbital is filled.

Figure 4 compares SM calculations of NMEs obtained
using the KB3G interaction with seniority-zero initial and
final states and the full pf calculation. In addition, NMEs for
the exact isospin projection of seniority-zero states are also
compared. The left-hand panels in Figure 4—panels (a), (c),
and (e)—show that the Fermi components of the NMEs are
strongly reduced when projection to good isospin is performed.
Therefore, 0νββ decay calculations where isospin symmetry is
not conserved are expected to significantly overestimate M0ν

F .
In particular the ratio of Fermi to GT components, defined
as χF = (gV /gA)2M0ν

F /M0ν
GT, is reduced from −χF ∼ 0.3, for

seniority-zero calculations without good isospin, to −χF ∼
0.15, for the complete pf results where isospin symmetry is
conserved. Typical χF values obtained in QRPA and IBM cal-
culations are −χF ∼ 0.3, . . . ,0.4 [19,22], while EDF values
range −χF ∼ 0.20, . . . ,0.25. The sizable χF values reflect the
isospin nonconservation of these calculations. Very recently
Ref. [19] attempted an approximate restoration of isospin
symmetry in the context of the QRPA, leading to a reduction
of Fermi matrix elements up to −χF ∼ 0.20, . . . ,0.25.

On the other hand, the right-hand panels in Fig. 4—panels
(b), (d), and (f)—show that isospin projection is only a small
correction to M0ν

GT. For the GT component, the reduction
is maximal at N = Z nuclei, and non-negligible in general,
but it becomes very minor in the most neutron-rich systems.
Therefore, the impact of isospin projection to M0ν

GT is expected
to be modest. The correlations associated with high-seniority
components in the initial and final states are responsible for the
strong reduction of M0ν

GT, and these correlations also wash out
the trend which appears with seniority-zero initial and final
states. In addition, it follows from Figs. 3 and 4 that these
correlations reduce the NMEs more significantly than the ones
associated with collective deformation in the EDF approach.

Figure 5 gives a detailed account of the evolution of the
SM M0ν

GT and M0ν
F parts of the NMEs as a function of the

maximum seniority allowed in the initial and final nuclear
states. This figure shows that for the 50Ca→50Ti 0νββ decay,
which relates two semimagic nuclei, seniority components
up to s = 4 are necessary for a reliable M0ν

GT and M0ν
F

calculation. The seniority decomposition of the full SM states
in s = 0/s = 4/s > 4 components is 97%/3%/0% for 50Ca
and 77%/21%/2% for 50Ti. On the other hand, higher seniority
components up to s = 8 are needed in the 48Ti→48Cr decay.
In this case the decomposition in seniority is 58%/37%/5%
for the s = 0/s = 4/s > 4 parts in 48Ti and 27%/42%/31%
for 48Cr. High-seniority components are therefore associated
with the description of the deformed 48Cr.
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FIG. 5. (Color online) Gamow-Teller [M0ν
GT, panels (a),(b)] and

Fermi [M0ν
F , panels (c),(d)] parts of the nuclear matrix element of the

0νββ decays of 50Ca→50Ti [panels (a),(c)] and 48Ti→48Cr [panels
(b),(d)]. Shell model (SM) results are shown as a function of the
maximum seniority permitted in the initial and final states (squares),
and also after isospin projection (circles). Energy density functional
(EDF) results using spherical initial and final states (dashed lines)
and the full EDF calculation (dashed-dotted lines) are also shown.
The EDF Gogny D1S and SM KB3G interactions are used.

Spherical and full EDF results are also shown in Fig. 5.
We have discussed above that spherical EDF results roughly
correspond to seniority-zero SM calculations. However, the
full EDF NMEs behave quite differently in the two decays
shown in in Fig. 5. For 50Ca→50Ti decay, the final EDF number
agrees with the results of the spherical NME calculation.
This is due to the semimagic character of the initial and
final states, which prevents any collective correlation in these
nuclei (this also applies to the 42Ca→42Ti decay). In contrast,
the full NMEs for the 48Ti→48Cr decay get contributions
from collective deformation and shape mixing. These final
NMEs are roughly equivalent to the SM s = 6 results.
This suggests that correlations associated to high-seniority
components in the SM are not completely captured in EDF
calculations. These could be partially responsible for the
differences between SM and EDF NMEs shown in Fig. 1.
Since the EDF states are built as linear combinations of
projected Hartree-Fock-Bogoliubov-type states with different
axial quadrupole deformations, these intrinsic states are fully
paired—in time-reversed single-particle orbits—by definition.
Therefore, pair-breaking in the seniority scheme is obtained
by deforming the system, but not by including explicitly
quasiparticle excitations on top of each intrinsic state. A step
further, beyond the scope of this work, would include on
equal footing both pair-breaking mechanisms into the GCM
framework, and study their influence in the NMEs.

024311-5

quasiparticle excitations

isospin projection

Outlook
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0.16

Correlated states make up 50% of ββ-ME
MMDGTDGT =0.08 MeV=0.08 MeV--11

Adding correlation with undifferentiated
bckgnd makes up ~100% of ββ-ME

MMDGTDGT =0.16 MeV=0.16 MeV--11

Description of odd nuclei

GT-strength

2

shell-model particle-hole decompositions so they can be
compared with those calculated in the QRPA.

II. FORMALISM AND MULTIPOLE
DECOMPOSITIONS

Throughout we assume that the 0νββ decay, if ob-
served, is caused by the exchange of the Majorana neutri-
nos, the same particles observed to oscillate. The half-life
of the decay is then

1

T1/2
= G0ν(E0, Z)|M0ν |2|⟨mββ⟩|2 , (1)

where G0ν(E0, Z) is a precisely calculable phase-space
factor and M0ν is the nuclear matrix element. The ef-
fective Majorana neutrino mass ⟨mββ⟩ is related to the
absolute mass scale and oscillation parameters through

⟨mββ⟩ =
N∑

i

|Uei|2eiαimi , (all mi ≥ 0) , (2)

where Uei is the first row of the neutrino mixing ma-
trix and the and αi are unknown Majorana phases. Any
uncertainty in M0ν makes the value of ⟨mββ⟩ equally
uncertain.

As stated above, we use the QRPA and RQRPA meth-
ods based on the G matrix derived from the realistic
Bonn CD nucleon-nucleon force, i.e., the many body
hamiltonian is

H =
A∑

i=1

p2
i

2mp
+

1

2

A∑

i,j=1

VG−matrix(i, j) . (3)

We describe in detail in Section V below the input used to
solve the corresponding well known equations of motion.

In the QRPA (and RQRPA) M0ν is written as a sum
over the virtual intermediate states, labeled by their an-
gular momentum and parity Jπ and indices ki and kf

(explanations of the notation are in Appendix A, and
II):

MK =
∑

Jπ,ki,kf ,J

∑

pnp′n′

(−1)jn+jp′+J+J × (4)

√
2J + 1

{
jp jn J
jn′ jp′ J

}
×

⟨p(1), p′(2);J ∥ f̄(r12)OK f̄(r12) ∥ n(1), n′(2);J ⟩ ×

⟨0+
f ||[

˜c+
p′ c̃n′ ]J ||Jπkf ⟩⟨Jπkf |Jπki⟩⟨Jπki||[c+

p c̃n]J ||0+
i ⟩ .

The operators OK , K = Fermi (F), Gamow-Teller (GT),
and Tensor (T) contain neutrino potentials and spin and

isospin operators, and RPA energies E
ki,kf

Jπ . The neu-
trino potentials, in turn, are integrals over the exchanged
momentum q,

HK(r12, E
k
Jπ) = (5)

2

πg2
A

R

∫ ∞

0
fK(qr12)

hK(q2)qdq

q + Ek
Jπ − (Ei + Ef )/2

.
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FIG. 1: Contributions of different angular momenta J asso-
ciated with the two decaying neutrons to the Gamow-Teller
part of M0ν in 82Se (upper panel) and 130Te (lower panel).
The results of LSSM (dark histogram) [23] and QRPA treat-
ments (lighter histogram) are compared. Both calculations
use the same single-particle spaces: (f5/2, p3/2, p1/2, g9/2) for
82Se and (g7/2, d5/2, d3/2, s1/2, h11/2) for 130Te. In the QRPA
calculation the particle-particle interaction was adjusted to
reproduce the experimental 2νββ-decay rate.

The functions fF,GT (qr12) = j0(qr12) and fT (qr12) =
j2(qr12) are spherical Bessel functions (the sign of j2 was
given incorrectly in Ref. [14]). The functions hK(q2) are
defined in Appendix A and in II. The potentials depend
explicitly, though rather weakly, on the energies of the
virtual intermediate states, Ek

Jπ . The function f̄(r12) in
Eq. 4 represents the effects of short range correlations.
These will be discussed in detail in Section IV.

Two separate multipole decompositions are built into
Eq. (4). One, already mentioned, is in terms the Jπ of
the virtual states in the intermediate nucleus, the good
quantum numbers of the QRPA and RQRPA. The other
decomposition is based on the angular momenta and par-
ities J π of the pairs of neutrons that are transformed into
protons with the same J π (we drop the superscript π
from now on for convenience). This latter representation
is particularly revealing. In Fig. 1 we illustrate it both in
the LSSM and QRPA, with the same single-single parti-
cle spaces in each. These two rather different approaches
agree in a semiquantitative way, but the LSSM entries

Multipole decomposition
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FIG. 5: Dependence of mixed and pure closure total NME
for the 0νββ decay of 82Se (light neutrino exchange) on
the average closure energy ⟨E⟩. Matrix elements presented
as: mixed with CD-Bonn SRC (solid curve), closure with
CD-Bonn SRC (dash-dotted), mixed with AV18 SRC (dashed
curve), and closure with AV18 (dotted curve).

4 presents convergence properties of the mixed NME in
a more enhanced form.

Figure 4 allows us to estimate the uncertainties asso-
ciated with the mixed approximation; it contains only
mixed NME calculated for different average closure en-
ergies: ⟨E⟩ = 1 MeV (solid line), ⟨E⟩ = 3.4 MeV (dash-
dotted line), ⟨E⟩ = 7 MeV (dashed line), and ⟨E⟩ = 10
MeV (dotted line). Our lack of knowledge of the av-
erage energy defines the calculation accuracy. If we re-
strict the range for average energy to 3.4–7.0 MeV (which
is quite reasonable since one curve approaches the final
NME from above and the other approaches it from be-
low, so the true NME should be confined somewhere in
between), then the uncertainty in the mixed NME can
be presented by the shaded area in the main panel. The
insert in Figure 4 presents the error in the mixed NME
associated with the shaded area from the main panel.
One can see that the mixed approximation provides an
accuracy of less than 1% for only 50–100 first interme-
diate states for each Jπ. It can also be seen that there
is no need to increase the number of intermediate states;
250 states are more than enough to obtain very good
accuracy.

Figure 5 shows the difference in the average energy de-
pendence between the mixed and pure closure NME. The
average energy varies from 1 to 14 MeV. The solid and
dashed lines present the mixed NME calculated with CD-
Bonn and AV18 SRC [12] correspondingly; these matrix
elements have a very weak dependence on average en-
ergy. The dash-dotted and dotted lines present the pure
closure matrix elements which have stronger dependence
on ⟨E⟩. While the closure NME varies by 15%, which is

Pure closure Run. closure Run. nonclosure Mixed

M0ν
GT 2.750 2.664 2.898 2.983

M0ν
F -0.607 -0.594 -0.620 -0.632

M0ν
T -0.011 -0.008 -0.007 -0.011

M0ν
tot 3.127 3.035 3.285 3.377

TABLE I: NME for the 0νββ decay of 82Se (light neutrino
exchange) calculated within different approximations. All cal-
culations were done with CD-Bonn SRC parametrization and
for the average closure energy ⟨E⟩ = 10.08 MeV. The differ-
ence between mixed and pure closure total NME is about 8%.

SRC M0ν
GT M0ν

F M0ν
T M0ν

total

None 2.898 -0.590 -0.011 3.262

Miller-Spencer 2.337 -0.419 -0.011 2.593

CD-Bonn 2.993 -0.633 -0.011 3.387

AV18 2.831 -0.585 -0.011 3.195

TABLE II: Mixed NME for the 0νββ decay of 82Se
(light neutrino exchange) calculated with different SRC
parametrization schemes [12], ⟨E⟩ = 3.4MeV.

consistent with the similar estimates for 48Ca [12, 14], the
mixed NME only varies by 0.6%. If we choose the aver-
age energy close to 3.4 MeV we can reproduce the mixed
results in the framework of the closure approximation.
Table I summarizes the differences in the light

neutrino-exchange NME calculated within different ap-
proximations. The NME for the 0νββ decay of 82Se pre-
dicted by the mixed approach is about 8% greater than
the NME obtained with closure approximation when cal-
culated with the average energy ⟨E⟩ = 10.08 MeV, often
used in the literature [3, 6]. Similar results for other
isotopes were reported in Fig. 4 of Ref. [11] obtained
within the QRPA approximation. Table II presents the
mixed 82Se NME calculations performed with different
SRC parametrization sets from Ref. [12].
Table III presents a comparison of our results with the

recent calculations of 0νββ decay of 82Se (light neutrino
exchange). There are five different approaches for the
calculation of 0νββ decay NME presented in the table:
interacting shell model approach (ISM) [23]; quasiparti-
cle random phase approximation, Tüebingen-Bratislava-
Caltech group [(R)QRPA(TBC)] [24, 25]; quasipar-
ticle random phase approximation, Jyväskylä group
[QRPA(J)] [26]; interacting boson model (IBM-2) [6, 7];
and generator coordinate method (EDF) [8]. The value
gA = 1.254 is used in most of the calculations, except
for IBM-2, which uses the axial-vector coupling constant
gA = 1.269 [7]. It is useful to note that the difference be-
tween Miller-Spencer and UCOM matrix elements can be

Closure approximation

ND 2013 Article . . . NUCLEAR DATA SHEETS Boris Pritychenko

TABLE III. E↵ective nuclear matrix elements (M2⌫
eff ) for 2�(2⌫)-decay from the present work, ITEP evaluation, large-scale

shell-model and QRPA calculations.

Parent nuclide Process Transition Present work Yale & ITEP [35, 38] Shell model [42] QRPA [43]
48Ca 2�� 0+ ! 0+ 0.0383±0.0025 0.038±0.003 0.0389,0.0397,0.0538 0.0373
76Ge 2�� 0+ ! 0+ 0.120±0.021 0.118±0.005 0.0961 0.147
82Se 2�� 0+ ! 0+ 0.0826±0.0034 0.083±0.004 0.104 0.0687
96Zr 2�� 0+ ! 0+ 0.0824±0.0050 0.080±0.004 0.0952

100Mo 2�� 0+ ! 0+ 0.208±0.007 0.206±0.007 0.183
100Mo 2�� 0+ ! 0+1 0.170±0.020 0.167±0.011
116Cd 2�� 0+ ! 0+ 0.112±0.005 0.114±0.005 0.132
128Te 2�� 0+ ! 0+ 0.0326±0.0093 0.044±0.006 0.0489,0.0306 0.0464
130Te 2�� 0+ ! 0+ 0.0303±0.0022 0.031±0.004 0.0356,0.0224 0.019
136Xe 2�� 0+ ! 0+ 0.0173±0.0005 0.0207
130Ba 2✏ 0+ ! 0+ 0.218±0.062 0.174±0.017
150Nd 2�� 0+ ! 0+ 0.0572±0.0015 0.058±0.004 0.0348
150Nd 2�� 0+ ! 0+1 0.0417±0.0063 0.042±0.006
238U 2�� 0+ ! 0+ 0.185±0.028 0.19±0.04

FIG. 1. The NNDC 2�-decay data website http://
www.nndc.bnl.gov/bbdecay/ [8, 10].

• 136Xe: These data became available a year later
than publication of the ITEP evaluation. The
NNDC half-life value is based on the results from
three independent groups [26, 39, 40].

• The ITEP evaluation treats all (2+0)⌫ observations
as pure 2⌫-decay mode results and includes many
other assumptions that allow deduction of the pre-
cise values of nuclear matrix elements based on very
limited statistics. However, the present evaluation
clearly indicates large uncertainties for nuclear ma-
trix elements.

• Finally, this work uses the latest values of the phase
factors [35], while ITEP is based on rather outdated
values [2, 41].

The evaluated nuclear matrix elements can be com-
pared with recent theoretical calculations of M2⌫

GT [42, 43]
using the following equation [35]

|M2⌫
eff | = g

2
A ⇥ |(mec

2)M2⌫
GT |, (4)

where g

2
A=1.2732 and mec

2=0.511 MeV. Analysis of the
data in Table III indicates reasonably good agreement be-
tween theoretical and experimental values of the nuclear
matrix elements. Several deviations are due to problems
with the calculation of nuclear matrix elements for very
weak decays [44] because accurate values of the Gamow-
Teller strength functions are often missing.

To gain a better understanding of decay half-lives, we
will analyze the half-life values of 128,130Te in more de-
tail. Both tellurium isotopes have the same charge and
a similar shell structure and deformation, but the 2��-
transition energies are di↵erent. It is natural to assume
that the di↵erence between tellurium half-lives is due to
transition energies [45]. In fact, in the present evaluation,
central values for T

2⌫
1/2 are consistent with the following

ratio

T

2⌫
1/2(

128
Te)

T

2⌫
1/2(

130
Te)

⇡ 4.9⇥ 103 ⇠ (
E

130Te

E

128Te
)7.9. (5)

From this equation we deduce the following systematic
trend

T

2⌫
1/2(0

+ ! 0+) ⇠ 1

E

8
. (6)

This conclusion agrees well with the theoretical calcu-
lation of Primako↵ and Rosen [46] who predicted that for
2�(2⌫) decay, the phase space available to the four emit-
ted leptons is roughly proportional to the 8th through
11th power of energy release. It is worth noting that
in many direct detection experiments the discovery was
based on the observation of the total energy deposition,
and authors often could not separate a two-electron event
from the single-electron tracks [8]. Consequently, the ob-
served relation between experimental half-lives and tran-
sition energies provides an additional observable quantity
for double-beta decay processes.

Additional analysis of 96Zr, 100Mo, 130Te, and 136Xe
decay rates provides complimentary experimental evi-

3

2νβ
β-NMEs
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