

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Structure of light nuclei with continuum within an *ab initio* framework

Hirschegg 2015

Nuclear Structure and Reactions: Weak, Strange and Exotic

International Workshop XLIII on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria, January 11 - 17, 2015

Petr Navratil | TRIUMF

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

- What is meant by *ab initio* in nuclear physics
- Chiral nuclear forces
- Bound-state calculations: No-core shell model (NCSM)

- Including the continuum with the resonating group method
 - NCSM/RGM
 - NCSM with continuum
- Outlook

What is meant by ab initio in nuclear physics?

- First principles for Nuclear Physics: QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future

Degrees of freedom: NUCLEONS

- Nuclei made of nucleons
- Interacting by nucleon-nucleon and three-nucleon potentials
 - Ab initio
 - \diamond All nucleons are active
 - \diamond Exact Pauli principle
 - \diamond Realistic inter-nucleon interactions
 - ♦ Accurate description of NN (and 3N) data
 - \diamond Controllable approximations

From QCD to nuclei

Nuclear structure and reactions

Chiral Effective Field Theory

- First principles for Nuclear Physics:
 QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

The NN interaction from chiral EFT

PHYSICAL REVIEW C 68, 041001(R) (2003)

Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory

D. R. Entem^{1,2,*} and R. Machleidt^{1,†}

-10

-20

-30

0

200

Lab. Energy (MeV)

100

300

-10

-20

-30

0

200

Lab. Energy (MeV)

100

300

- 24 LECs fitted to the *np* scattering data and the deuteron properties
 - Including c_i LECs (i=1-4) from pion-nucleon Lagrangian

Leading terms of the chiral NNN force

From QCD to nuclei

No-core shell model

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\textcircled{\baselineskip}} , \lambda \right\rangle$$
 Unknowns

From QCD to nuclei

Calculations with chiral 3N: SRG renormalization needed

NCSM calculations of ⁶He g.s. energy

Dependence on: Basis size $-N_{max}$ HO frequency $-h\Omega$

- Soft SRG evolved NN potential
- ✓ N_{max} convergence OK
- Extrapolation feasible

$E_{\rm g.s.}$ [MeV]	⁴ He	⁶ He	
NCSM $N_{\text{max}}=12$	-28.05	-28.63	
NCSM extrap.	-28.22(1)	-29.25(15)	
Expt.	-28.30	-29.27	

NCSM calculations of ⁶He and ⁷He g.s. energies

- Soft SRG evolved NN potential
- ✓ N_{max} convergence OK
- Extrapolation feasible

$E_{\rm g.s.} [{\rm MeV}]$	⁴ He	⁶ He	$^{7}\mathrm{He}$
NCSM $N_{\rm max}=12$	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

- ⁷He unbound
 - Expt. *E*_{th}=+0.430(3) MeV: NCSM *E*_{th}≈ +1 MeV
 - Expt. width 0.182(5) MeV: NCSM no information about the width

Light & medium mass nuclei from first principles

- Nuclear structure and reaction theory for light nuclei cannot be uncoupled
 - Well-bound nuclei, e.g. ¹²C, have low-lying cluster-dominated resonances
 - Bound states of exotic nuclei, e.g. ¹¹Be, manifest **many-nucleon correlations**

Extending no-core shell model beyond bound states

Include more many nucleon correlations...

Trial function: generalized cluster wave function

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

Trial function: generalized cluster wave function

- ϕ : antisymmetric cluster wave functions
 - { ξ }: Translationally invariant internal coordinates
 - (Jacobi relative coordinates)
 - These are known, they are an input

 ϕ_{2v}

A

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

Trial function: generalized cluster wave function

• A_{ν}, A_{μ} : intercluster antisymmetrizers

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

- Antisymmetrize the wave function for exchanges of nucleons between clusters
 - Example: $a_{1\nu} = A - 1, \ a_{2\nu} = 1 \implies \hat{A}_{\nu} = \frac{1}{\sqrt{A}} \left[1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right]$

Trial function: generalized cluster wave function

- *c*, *g* and *G*: discrete and continuous linear variational amplitudes
 - Unknowns to be determined

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

Trial function: generalized cluster wave function

- Discrete and continuous set of basis functions
 - Non-orthogonal

RIUMF

– Over-complete

No-core shell model

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\textcircled{\baselineskip}{\baselineskip}} , \lambda \right\rangle$$
 Unknowns

No-core shell model with RGM

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances
 - NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion

 $\Psi^{(A)} =$

- proper asymptotic behavior
- long-range correlations

No-core shell model with continuum

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances

- cluster expansion
- proper asymptotic behavior
- long-range correlations

S. Baroni, P. N., and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

The most efficient: No-Core Shell Model with Continuum (NCSMC)

Coupled NCSMC equations

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic *R*-matrix on Lagrange mesh

Norm kernel (Pauli principle) Single-nucleon projectile

$$\left\langle \Phi_{\nu'r'}^{J^{\pi}T} \left| \hat{A}_{\nu} \hat{A}_{\nu} \right| \Phi_{\nu r}^{J^{\pi}T} \right\rangle = \left\langle \begin{array}{c} (A-1) \\ \hline r' \\ r' \\ (a'=1) \end{array} \right| 1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \left| \begin{array}{c} (A-1) \\ (a=1) \\ \hline r \\ r' \\ \end{array} \right\rangle$$

WTRIUMF

Microscopic R-matrix on a Lagrange mesh

External region $u_c(r) \sim v_c^{-\frac{1}{2}} \left[\delta_{ci} I_c(k_c r) - U_{ci} O_c(k_c r) \right]$

Separation into "internal" and "external" regions at the channel radius *a*

This is achieved through the Bloch operator:

$$L_c = \frac{\hbar^2}{2\mu_c} \delta(r-a) \left(\frac{d}{dr} - \frac{B_c}{r}\right)$$

Scattering matrix

- System of Bloch-Schrödinger equations:

Internal region $u_c(r) = \sum A_{cn} f_n(r)$

$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\right]u_c(r) + \sum_{c'}\int dr' r' W_{cc'}(r, r')u_{c'}(r') = L_cu_c(r)$$

- Internal region: expansion on square-integrable Lagrange mesh basis
- External region: asymptotic form for large r

$$u_c(r) \sim C_c W(k_c r)$$
 or $u_c(r) \sim v_c^{-\frac{1}{2}} \left[\delta_{ci} I_c(k_c r) - U_{ci} O_c(k_c r) \right]$

Bound state

()

Scattering state

n $\left\{ax_{n} \in [0,a]\right\}$ $\int_{0}^{1} g(x)dx \approx \sum_{n=1}^{N} \lambda_{n}g(x_{n})$ $\int_{0}^{a} f_{n}(r)f_{n'}(r)dr \approx \delta_{nn'}$

 $u_c(r) = \sum A_{cn} f_n(r)$

p-⁴He scattering within NCSMC

p-⁴He scattering phase-shifts for NN+3N potential:

Convergence

Differential p-⁴He cross section with NN+3N potentials

Including 3N interaction in the NCSM/RGM Single-nucleon projectile:

$$\left\langle \Phi_{v'r'}^{J^{\pi}T} \left| \hat{A}_{v'} V^{NNN} \hat{A}_{v} \right| \Phi_{vr}^{J^{\pi}T} \right\rangle = \left\langle \begin{array}{c} (A-1) \\ (A-1) \\ r' \\ (a'=1) \end{array} \right| V^{NNN} \left(1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right) \left| \begin{array}{c} (A-1) \\ (a=1) \\ r \\ (a=1) \\ r \\ \end{array} \right\rangle$$

$$\mathcal{V}_{\nu'\nu'}^{NNN}(r,r') = \sum_{mn'l'} R_{n'l'}(r')R_{nl}(r) \begin{bmatrix} (A-1)(A-2) \\ 2 \end{bmatrix} \langle \Phi_{\nu'n'}^{J\pi T} | V_{A-2A-1A}(1-2P_{A-1A}) | \Phi_{\nu n}^{J\pi T} \rangle \\ - \frac{(A-1)(A-2)(A-3)}{2} \langle \Phi_{\nu'n'}^{J\pi T} | P_{A-1A}V_{A-3A-2A-1} | \Phi_{\nu n}^{J\pi T} \rangle \end{bmatrix}.$$
Direct potential: in the model space
(interaction is localized!)
$$(\text{interaction is localized!})$$
Exchange potential: in the model space
(interaction is localized!)
$$(\text{interaction is localized!})$$
Including 3N interaction challenging: more than 2 body density required
PHysical REVIEW C 88, 054622 (2013)
$$(A-1)(A-2)(A-3) \\ Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces$$

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

n-⁴He scattering within NCSMC

n-⁴He scattering phase-shifts for chiral NN and NN+3N potential

Total *n*-⁴He cross section with NN and NN+3N potentials

3N force enhances $1/2^- \leftrightarrow 3/2^-$ splitting: Essential at low energies!

PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-⁴He scattering with three-nucleon forces

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

NCSM calculations of ⁶He and ⁷He g.s. energies

- Soft SRG evolved NN potential
- ✓ N_{max} convergence OK
- Extrapolation feasible

$E_{\rm g.s.} [{\rm MeV}]$	⁴ He	⁶ He	$^{7}\mathrm{He}$
NCSM $N_{\text{max}}=12$	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

- ⁷He unbound
 - Expt. E_{th} =+0.430(3) MeV: NCSM E_{th} ≈ +1 MeV
 - Expt. width 0.182(5) MeV: NCSM no information about the width

NCSM with continuum: ⁷He \leftrightarrow ⁶He+*n*

Structure of ⁹Be

⁹Be is a stable nucleus ... but all its excited states unbound A proper description requires to include effects of continuum

The lowest threshold: $n^{-8}Be(n-\alpha-\alpha)$

Optimal description: Square-integrable ⁹Be basis + n-⁸Be clusters

NCSMC with chiral NN+3N: Structure of ⁹Be

J. Langhammer, P. N., G. Hupin, S. Quaglioni, A. Calci, R. Roth, arXiv:1411.2541 [nucl-th]

NCSMC with chiral NN+3N: Structure of ⁹Be

NN NN+3N Expt. NN+3N NN

⁹Be is a stable nucleus ... but all its excited states unbound A proper description requires to include effects of continuum

Three-nucleon interaction *and* continuum improve agreement with experiment for negative parity states

Continuum crucial for the description of positive-parity states

J. Langhammer, P. N., G. Hupin, S. Quaglioni, A. Calci, R. Roth, arXiv:1411.2541 [nucl-th]

NCSMC wave function

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\$} \stackrel{(A)}{\$} , \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \stackrel{(A)}{\$} \stackrel{(A)}{\$} , \nu \right\rangle$$

$$\begin{split} \left| \Psi_{A}^{J^{\pi}T} \right\rangle &= \sum_{\lambda} \left| A\lambda J^{\pi}T \right\rangle \bigg[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda\lambda'} \bar{c}_{\lambda'} + \sum_{\nu'} \int dr' \, r'^{2} (N^{-\frac{1}{2}})^{\lambda}_{\nu'r'} \frac{\bar{\chi}_{\nu'}(r')}{r'} \bigg] \\ &+ \sum_{\nu\nu'} \int dr \, r^{2} \int dr' \, r'^{2} \hat{\mathcal{A}}_{\nu} \left| \Phi_{\nu r}^{J^{\pi}T} \right\rangle \mathcal{N}_{\nu\nu'}^{-\frac{1}{2}}(r,r') \bigg[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda'}_{\nu'r'} \bar{c}_{\lambda'} + \sum_{\nu''} \int dr'' \, r''^{2} (N^{-\frac{1}{2}})_{\nu'r'\nu''r''} \frac{\bar{\chi}_{\nu''}(r'')}{r''} \bigg]. \end{split}$$

Asymptotic behavior $r \rightarrow \infty$:

$$\overline{\chi}_{v}(r) \sim C_{v}W(k_{v}r) \qquad \overline{\chi}_{v}(r) \sim v_{v}^{-\frac{1}{2}} \left[\delta_{vi}I_{v}(k_{v}r) - U_{vi}O_{v}(k_{v}r) \right]$$

Bound state

Scattering state

Scattering matrix

Reaction $\alpha(\alpha n, \gamma)^9$ Be relevant for astrophysics: beginning of r-process Inverse process ⁹Be($\gamma,\alpha n$) α measured in laboratory

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

p+¹⁰C scattering: structure of ¹¹N resonances

- Limited information about the structure of proton rich ¹¹N – mirror nucleus of ¹¹Be halo nucleus
- Incomplete knowledge of ¹⁰C unbound excited states
- Importance of 3N force effects and continuum

¹⁰C(p,p) @ IRIS with solid H₂ target

- New experiment at ISAC TRIUMF with reaccelerated ¹⁰C
 - The first ever ¹⁰C beam at TRIUMF
 - Angular distributions measured at $E_{\rm CM}$ ~ 4.1 MeV and 4.4 MeV
 - Data analysis under way

p+¹⁰C scattering: structure of ¹¹N resonances

- NCSMC calculations including chiral 3N (N³LO NN+N²LO 3NF400)
 - $p^{-10}C + {}^{11}N$

- ¹⁰C: 0⁺, 2⁺, 2⁺ NCSM eigenstates
- ¹¹N: 6 π = -1 and 3 π = +1 NCSM eigenstates

🔁 + 🚰

p+¹⁰C scattering: structure of ¹¹N resonances

¹¹N from chiral NN+3N within NCSMC

¹¹N Expt. (TUNL evaluation)

- Preliminary

	Jπ	Т	E_{res} [MeV]	E _x [MeV]	Γ [keV]
	1/2+	3/2	1.35	0	"4100"
	1/2-	3/2	1.94	0.59	580
✓	3/2 ⁻ 5/2 ⁺	3/2	4.69 4.75	3.34 3.40	280 1790
	3/2+	3/2	4.95	3.60	"4760"
	5/2-	3/2	5.95	4.60	470
	3/2-	3/2	7.68	6.33	620

$E_{\rm res}$ (MeV ± keV)	$E_{\rm x}$ (MeV \pm keV)	$J^{\pi}; T$	Γ (keV)
1.49 ± 60	0	$\frac{1}{2}^+; \frac{3}{2}$	830 ± 30
2.22 ± 30	0.73 ± 70	$\frac{1}{2}^{-}$	600 ± 100
3.06 ± 80	(1.57 ± 80)		< 100
3.69 ± 30	2.20 ± 70	$\frac{5}{2}^{+}$	540 ± 40
4.35 ± 30	2.86 ± 70	$\frac{3}{2}^{-}$	340 ± 40
5.12 ± 80	(3.63 ± 100)	$(\frac{5}{2}^{-})$	< 220
5.91 ± 30	4.42 ± 70	$(\frac{5}{2}^{-})$	
6.57 ± 100	5.08 ± 120	$(\frac{3}{2}^{-})$	100 ± 60

$$\Gamma = \left. \frac{2}{\partial \delta(E_{kin}) / \partial E_{kin}} \right|_{E_{kin} = E_R}$$

Negative parity 1/2⁻ and 3/2⁻ resonances in a good agreement with the current evaluation

Positive parity resonances too broad $-N_{max}$ convergence

p+¹⁰C scattering: structure of ¹¹N resonances

¹¹N from chiral NN+3N within NCSMC

Preliminary

	Jπ	Т	E _{res} [MeV]	E _x [MeV]	Γ [keV]
	1/2+	3/2	1.35	0	"4100"
✓	1/2-	3/2	1.94	0.59	580
\checkmark	3/2-	3/2	4.69	3.34	280
	5/2+	3/2	4.75	3.40	1790
	3/2+	3/2	4.95	3.60	"4760"
	5/2-	3/2	5.95	4.60	470
	3/2-	3/2	7.68	6.33	620

$E_{\rm res}$ (MeV \pm keV)	$E_{\rm x}$ (MeV \pm keV)	$J^{\pi}; T$	Γ (keV)
1.49 ± 60	0	$\frac{1}{2}^+; \frac{3}{2}$	830 ± 30
2.22 ± 30	0.73 ± 70	$\frac{1}{2}^{-}$	600 ± 100
→ 3.06 ± 80	(1.57 ± 80)		< 100
3.69 ± 30	2.20 ± 70	$\frac{5}{2}^{+}$	540 ± 40
4.35 ± 30	2.86 ± 70	$\frac{3}{2}^{-}$	340 ± 40
→ 5.12 ± 80	(3.63 ± 100)	$(\frac{5}{2}^{-})$	< 220
→ 5.91 ± 30	4.42 ± 70	$(\frac{5}{2}^{-})$	
6.57 ± 100	5.08 ± 120	$(\frac{3}{2}^{-})$	100 ± 60

No candidate for 3.06 MeV resonance

We predict only one $5/2^{-1}$ resonance below the $3/2^{-1}_{2}$

Calculations suggest that either 5.12 MeV or 5.91 MeV resonance might be 3/2⁺ instead

NCSMC resonance predictions more in line with assignments in ¹¹Be

¹¹N Expt. (TUNL evaluation)

Solar p-p chain

Solar p-p chain

Big Bang nucleosythesis

RUMF

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.1 fm⁻¹) ³He, ³H, ⁴He ground state, 8(π -) + 6(π +) eigenstates of ⁷Be and ⁷Li Preliminary: N_{max}=12, h Ω =20 MeV E_{th}(⁷Be)=-1.70 MeV (Expt. -1.59 MeV) E_{th}(⁷Li) = -2.62 MeV (Expt. -2.47 MeV)

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.1 fm⁻¹) ³He, ³H, ⁴He ground state, 8(π -) + 6(π +) eigenstates of ⁷Be and ⁷Li Preliminary: N_{max}=12, h Ω =20 MeV E_{th}(⁷Be)=-1.70 MeV (Expt. -1.59 MeV) E_{th}(⁷Li) = -2.62 MeV (Expt. -2.47 MeV)

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.1 fm⁻¹) ³He, ³H, ⁴He ground state, 8(π -) + 6(π +) eigenstates of ⁷Be and ⁷Li Preliminary: N_{max}=12, hΩ=20 MeV E_{th}(⁷Be)=-1.70 MeV (Expt. -1.59 MeV) E_{th}(⁷Li) = -2.62 MeV (Expt. -2.47 MeV)

In progress J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.1 fm⁻¹) ³He, ³H, ⁴He ground state, 8(π -) + 6(π +) eigenstates of ⁷Be and ⁷Li Preliminary: N_{max}=12, h Ω =20 MeV E_{th}(⁷Be)=-1.70 MeV (Expt. -1.59 MeV) E_{th}(⁷Li) = -2.62 MeV (Expt. -2.47 MeV)

Three-body clusters in ab initio NCSM/RGM

• Starts from:

Transfer reactions with three-body continuum final states

NCSM/RGM for three-body clusters: Structure of ⁶He

⁵H \approx ⁴He + *n* + *n* in progress

Conclusions and Outlook

- *Ab initio* calculations of nuclear structure and reactions is a dynamic field with significant advances
- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM = NCSMC
 - Inclusion of three-nucleon interactions in reaction calculations for A>5 systems
 - Extension to three-body clusters ($^{6}\text{He} \sim {}^{4}\text{He}+n+n$)
 - Applications to capture reactions important for astrophysics

• Outlook:

TRIUMF

- Extension to composite projectiles (deuteron, ³H, ³He)
- Transfer reactions
- Bremsstrahlung
- Alpha-clustering (⁴He projectile)
 - ¹²C and Hoyle state: ⁸Be+⁴He
 - ¹⁶O: ¹²C+⁴He

NCSMC and NCSM/RGM collaborators

Sofia Quaglioni (LLNL)

- Francesco Raimondi, Jeremy Dohet-Eraly, Angelo Calci (TRIUMF)
- Joachim Langhammer, Robert Roth (TU Darmstadt)
- Carolina Romero-Redondo, Michael Kruse (LLNL)
- Guillaume Hupin (Notre Dame)
- Simone Baroni (ULB)
- Wataru Horiuchi (Hokkaido)