

Precision mass measurements for nuclear physics

J. Dilling

TRIUMF/University of British Columbia Vancouver, Canada

> Currently on sabbatical at the MPI-K Heidelberg & EMMI

> > Hirschegg workshop 2015 January 11-16 2015

TRIUMF

Members

University of Alberta University of BC Carleton University University of Guelph Queen's University Simon Fraser University of Toronto University of Victoria York University

Associate Members

University of Calgary McMaster University University of Northern BC University of Regina University of Manitoba Saint Mary's University Université de Montréal University of Winnipeg McGill University Western University

Canada's National Laboratory for Particle and Nuclear Physics

TRIUMF is owned & operated by a consortium of 19 universities Founded 45 years ago in Vancouver

TRIUMF's accelerator complex

ISAC rare isotope facility

Experimental facilities and programs @ ISAC international program

RTRIUMF

Future Project: ARIEL

- expand RIB program with:
 - 3 simultaneous beams
 - increased number of hours delivered per year
 - new beam species
 - enable long beam times (nucl. astro, fund. symm.)
 - increased beam development capabilities
- New electron linac driver for photo-fission
- New proton beamline
- staged installationstarted 2012

ARIEL, Civil construction and eLINAC

ARIEL: e-linac for photo-fission total power: 0.5 MW

TIMELINE:

- 2014 first beam, target R&D
- 2017 new front end (phase II)
- 2017 physics production ⁸Li
- 2018 photo fission
- 2020 proton beam (3 beams)

Atomic Masses.

ISAC RIB Facility

TRIUMF's Ion Trap for Atomic and Nuclear Science

- High-precision mass measurements
 - In-trap decay spectroscopy

The TITAN Facility

J. Dilling *et al.*, NIMB **204** (2003) 492

Measurement Penning Trap

M. Brodeur et al., PRC 80 (2009) 024314; M. Brodeur et al., IJMS 20 (2012) 310

Penning trap mass measurements Precision and accuracy

Since PT were developed for ions, they behave the same way for stable or unstable particles! Ideal for systematic test and optimizations

Verification of performance using stable masses (or standard ¹²C)

FRIUMF

Fast and efficient (but keeping the precision)

$$V_{c} = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B \quad \delta m \approx \frac{1}{\nu_{c}} \propto \frac{1}{T_{RF}} \cdot q \cdot B \cdot \sqrt{N}$$

 Improve precision using different excitation mod Ramsey (gain factor ~2)

RIUMF

- Precision depends on v_c, boosting the frequency i key.
 - Can be done with highc.
 excitation modes:
 - Octupole excitation: JYFLTRAP, LEBIT, SHIPTRAP: S. Eliseev et al., PRL. 107, 152501 (2011)
 - Using highly charged ions: developed at SMILETRAP, now also for radioactive beams: TITAN : S. Ettenauer et al., PRL 107, 272501 (2011), IJMS 349 (2013) 79

0.00

-3 - 2 - 1 0

2 3

1

The need for speed

50

- N-deficient Mg isotopes
- N-rich Na, AI, Mg isotopes (IoI)

- Mass measurements of Mg masses Technical difficulty: ISOL production is not selective:
- isobars are co-produced with the isotopes of interest!
- Na, closer to stability, and longer-lived
- much more extracted and delivered to experiment (1.000.000-1 ratio)
- cleaning system required!

RIVMF Tricks for clean beams: Go to the source! Ion Guide Laser Ion Source (IG-LIS)

_____ 10mm

Performance of the source: IG-LIS

Measured Na contamination at MPET < 1%

Isospin-symmetry breaking in A = 20,21 multiplets with TITAN

ME Unc. (keV):

Aeas, Unc. (keV)

Aeas-AME12 (keV)

Sirge Ratio

1.640

80.998

1.352(0.1947

$M(A,T,T_z) = a(A,T) + b(A,T) T_z + c(A,T) T_z^2$

AME12 & 15x improved

²¹Mg: 14 σ deviation & 22x improved precision

Compared to USDA/B & χ EFT *NN*+3*N* predictions • G.S. binding energy

Nuclide	Exp.	USDA	USDB	NN + 3N
²⁰ Mg	-6.94	-6.71	-6.83	-6.89
^{21}Mg	-21.59	-21.79	-21.81	-23.18

 non-zero d coefficients in all three multiplets, A=20,0+, A=21,1/2+, 5/2+

 d_{exp} cannot be explained by **USDA/B** models

• uncertainties in χ EFT calculations too large to be definitive

week ending PHYSICAL REVIEW LETTERS PRL 113, 082501 (2014) 22 AUGUST 2014

Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets

A. T. Gallant,^{1,2,*} M. Brodeur,³ C. Andreoiu,⁴ A. Bader,^{1,5} A. Chaudhuri,^{1,‡} U. Chowdhury,^{1,6} A. Grossheim,¹ R. Klawitter,^{1,7} A. A. Kwiatkowski,¹ K. G. Leach,^{1,4} A. Lennarz,^{1,8} T. D. Macdonald,^{1,2} B. E. Schultz,¹ J. Lassen,^{1,6} H. Heggen,¹ S. Raeder,¹ A. Teigelhöfer,^{1,6} B. A. Brown,⁹ A. Magilligan,¹⁰ J. D. Holt,^{11,12,9,†} J. Menéndez,^{11,12} J. Simonis,^{11,12} A. Schwenk,^{12,11} and J. Dilling^{1,2} ¹TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada

Excellent collaboration of target/ion source group, experiment and theory

EXTRIUMF

RIUMF Island-Of-Inversion Mass Cartography

A. Chaudhuri et al, PRC 88 (2013) 054317; A.Kwiatkowski et al, submitted to PLB;

The TITAN Facility

Enhanced mass measurements: Electron Beam Ion Trap

- Superconducting magnet, Helmholtz configuration
- Design specs up to an electron beam 70 keV & 5 A
- 7 radial ports with recessed Be windows

cathode

Sikler lens

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

electron gun 500 mA achieved

Optimizing Penning trap Performance

$$\frac{\delta m}{m} \approx \frac{m}{q B T_{RF} \sqrt{N}}$$

 $\begin{array}{ll} N & \mbox{limited by yield/beam time} \\ T_{RF} & \mbox{limited by } T_{1/2} \\ B & \mbox{limited by } \delta B/B \\ \mbox{q} & \mbox{up to } Z+ \end{array}$

Boost precision or Reduce experimental requirements for the same precision ⁷⁴Rb⁸⁺ $T_{1/2} = 64 \text{ ms}$ Heaviest superallowed β emitter

S. Ettenauer et al., PRL 107 (2011) 272501

Increased Resolving Power

A.T. Gallant et al., PRC 85 (2012) 044311

Improved Beam Purity

1.0-To measure ⁷¹Ge Q-value, needed Ga to separate small amount of ⁷¹Ge 0.8from overwhelming ⁷¹Ga 21+ contamination 0.6-20+ Exploited Z dependence of charge-0.4-15+ state distribution & large increase in I_a at closed shells 0.2-Ne-like ions could be achieved for E 9:8-~ 2 keV & $Jt \ge 20$ A cm⁻² s \rightarrow Ga predominantly ⁷¹Ga²¹⁺ and ⁷¹Ge²²⁺ Ge 0.8-21+(CBSIM simulations allow for a 22+ systematic approach) 0.6η_{pop} 0.4 0.2-0.0-10 100 Jt [A cm⁻² s] A.A. Kwiatkowski, T.D. Macdonald, et al., NIMB 317 (2013 517

Threshold Charge Breeding

FRIUMF

Investigating the ⁷¹Ga Anomaly

- SAGE & GALLEX measured solar v_e flux
- Deficit in measured-to-predicted $^{71}\mbox{Ge}$ event rates of 13% or 2.5 σ
- Need to verify underlying nuclear-physics assumptions
 - C.E. experiment verified contributions from lowestlying ⁷¹Ge states
 - Remaining uncertainties from

Confirmation of ⁷¹Ga and ⁵¹Cr nuclear structure. The discrepancy persists.

D. Frekers et al., PLB 706 (2011) 134; D. Frekers, et al., PLB 722 (2013) 233; T.D. Macdonald, et al, PRC 89 (2014) 044318

Getting new isotopes: In-trap Feeding

- Original question: How to populate ^{34m}Al (1+, 26 ms);
- Produce isomers or nucldie unavailable via ISOL production through in-trap decay
- Proof of principle with ³⁰Al
 - ³⁰Mg⁺ parent yield ≈10⁶ pps
 - Good separation of T_{1/2}
 - Expected observables:
 - x-rays & γ-rays
 - HCI spectra on MCP
 - Resonances in MPET

T.A. Hinners et al, PRC 77 (2008) 034305; D.E. Alburger & D.R. Goosman, PRC 9 (1974) 2236

In-trap Feeding: ³⁰Mg ^{Q+} Mother

In-trap Feeding: ³⁰Al^{Q+} Daughter

A.A. Kwiatkowski, R. Klawitter, A. Lennarz, et al, in preparation

In-trap Decay Spectroscopy

- Advantages:
 - No backing material
 - High purity sample
 - Background material → precision and sensitivity
- Objective: determine 2v2EC NME by measuring branching ratios of intermediate nuclei

- Up to 7 SiLi detectors w/ CuPb shields
- 1 HPGe detector for normalization
- Electrons are guided away from SiLi detectors and can be detected on a PIPS detector

OR

 Electron beam can be used to improve confinement

D. Frekers et al., CJP 85(2007)57; K.G. Leach et al., arXiV 1405.7209

RIUMF

In-trap Decay Spectroscopy

- Commissioning of SiLi array with ¹²⁴Cs^{Q+}
- Trap is completely emptied between runs
- No positron-annihilation radiation

- Observed dynamic evolution of states
- Used for 2v2β BR measurements

A. Lennarz, et al, Phys. Rev. Lett. 113 (2014) 082502; K.G. Leach et al., arXiV 1405.7209

Multi-injection in EBIT: Ion Stacking

- RFQ space-charge limit 10.000× smaller than EBIT
- Inject multiple ion bunches :
 - Open trap for singly charged ions
 - Close trap for singly charged ions (△V)
 - After charge breeding, ions experience deep potential well (△V·Q)

K.G. Leach et al., arXiV 1411.4083

TITAN technical developments

Multi-Reflection Time-of-Flight Mass Separator:

- Tested in Giessen to $M/\Delta M \approx 50\ 000$
- Will improve beam-purity capability from 1:200 to 1:10⁴ desired ion to contamination ratio
- Arrived at TRIUMF 10th of September
- Off-line commissioning Spring 2015, on-line December 2015

Summary & Outlook

- Penning-trap mass measurements of very short-lived species
 - Measurements in the N = 20 island of inversion
 - IMME Mg isotopes at A=20
- Charge breeding
 - Systematic approach w/ simulations
 - To boost precision
 - To increase resolving power
 - To improve beam purity (threshold charge breeding)
- In-trap feeding demonstrated
 - Populate a specific ground state or a nuclide not produced with ISOL technique
- In-trap decay spectroscopy
 - Electron beam to improve observation time and confinement
 - SiLi array commissioned with ¹²⁴Cs
 - Ion stacking demonstrated
 - Exploring HCI effects

- ISAC offers excellent experimental opportunities
- New developments with the e-linac and photo-fission and extra proton beam line

TITAN technical developments:

- MR-TOF
 - For isobaric contaminant removal & fast mass measurements
 - Tested off-line at Giessen
 - Delivered to TRIUMF in September
 - Off-line commissioning on-going
 - On-line planned for Dec 2015

TITAN summary

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you!

Thanks to my theory colleagues for the collaboration and help

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada TRIUMF:

Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's Simon Fraser | Toronto | Victoria | Winnipeg | York

