Exploring the continuum, proton and neutron rich

Hirschegg 2015 Nuclear Structure and Reactions: Weak, Strange and Exotic January 11th - 17th, 2015 Hirschegg, Austria

ELMHOLTZ GEMEINSCHAFT

At the boundaries: Three body systems

			0																			
					¹⁵ Ne unbound	¹⁶ Ne unbound	¹⁷ Ne 109,2 ms	^{1°} Ne 1,672 s	¹⁹ Ne 17,22 s	²⁰ Ne	²¹ Ne	²² Ne										
				14 F unbound	¹⁵ F unbound	¹⁶ F unbound	¹⁷ F 64.8 s	¹⁸ F 109.7 m	¹⁹ F	²⁰ F 11 s	²¹ F 4.16 s	²² F 4.23 s	²³ F ^{2.23 s}	²⁴ F _{0.39 s}	25F 80 ms	26F 9.7 ms	²⁷ F 5.0 ms	²⁸ F unbound	²⁹ F 2.5 ms	³⁰ F unbound		
				12O unbound	13O 8.58 ms	14O 70.6 s	15 <mark>0</mark> 2.03 m	¹⁶ O	¹⁷ O	¹⁸ O	19 <mark>0</mark> 27.1 s	20O 13.5 s	21O 3.42 s	22O 2.25 s	23O 97 ms	24O 65 ms	25O unbound	26O unbound	270 unbound	280 unbound		
Z			¹⁰ N unbound	¹¹ N unbound	¹² N _{20.4 m}	13N 20.4 m	¹⁴ N	¹⁵ N	16N 7.13 s	¹⁷ N _{4.17 s}	¹⁸ N _{0.63 s}	19N 329 ms	20N 136 ms	²¹ N ^{83 ms}	²² N ^{20 ms}	²³ N 14.5 ms	²⁴ N unbound	²⁵ N unbound				
Î		⁸ C unbound	⁹ С 125 ms	10 <u>С</u> 19.3 s	11 20.4 m	¹² C	¹³ C	¹⁴ С 5730 у	15C 2.45 s	16С 0.747 s	17C 193 ms	18C 92 ms	¹⁹ C ^{49 ms}	20C 14 ms	²¹ C unbound	22C 6.1 ms						
		⁷ B unbound	⁸ B 770 ms	⁹ B unbound	¹⁰ B	¹¹ B	12B 20.20 ms	¹³ B 17.33 ms	¹⁴ B 13.8 ms	¹⁵ B 10.4 ms	16B unbound	17 B 5.1 ms	¹⁸ B unbound	¹⁹ B 2.9 ms	²⁰ B unbound	²¹ B unbound						
		⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be	¹³ Be unbound	¹⁴ Be 4.35 ms	¹⁵ Be unbound	¹⁶ Be unbound	¹⁷ Be unbound	¹⁸ Be unbound			1					
	⁴ Li unbound	⁵ Li unbound	⁶ Li	⁷ Li	⁸ Li ^{840 ms}	⁹ Li ^{179 m}	10Li unbound	¹¹ Li ^{8.5 ms}	¹² Li unbound	¹³ Li unbound									, ni			
² He unbound	³ He	⁴ He	⁵ He unbound	⁶ He ^{808 ms}	⁷ He	8 H 119 ms	⁹ He unbound	¹⁰ He unbound	/	-												
$^{1}\mathrm{H}$	² H	³ Н 12.323 у	⁴ H unbound	⁵ H unbound	6H unbound	⁷ H unbound					structure at the extremes											
	n 10.25 m					,	N				• clu • rel	ister iable	ed s e cor	syste ntinu	ems, ium	OQ spec	S ctros	scop	y y			

Menu

- Breakup Experiments at high energy

 and developments for FAIR
- Extremely neutron rich systems: ^{9,10}He

 remnants of ¹¹Li ?
- Proton rich systems: ¹⁵⁻¹⁷Ne -across the proton dripline
- 4. Summary

GSI accelerator facility ...

R³B/LAND Setup (kinematically complete)

Ongoing: Stagewise implementation of R³B for FAIR

Next step GLAD magnet @ R³B/CaveC

Installation of a superconducting replacement for ALADiN in 2015 → Test bench for R³B at FAIR

Already available:

(1) Cryogenics(2) Power supply and Quench Protection(3) Experiment Vacuum Chamber

GLAD magnet system ...

@CEA Saclay

- Magnet cold mass ready and tested, December 2013.
- Integration into cryostat finishes this month.
- Delivery to GSI expected in April 2015.

@GSI

- Cryoplant from Desy → Refurbished operational Dec 2014
- New Power Supply and Quench Protection → Installed Dec 2014
- Experiment Chamber for GLAD delivered and tested Nov 2014

Intermediate system tells g.s. properties (n or p knockout reaction)

Sensitive observable: Momentum profile & spectroscopy

10Li **11**Li

Transverse momentum Distribution of ¹⁰Li (missing momentum)

Decomposition and position of s and p confirmed!

similar result with energy dependent angular correlations

PLB718 (2013) 1309

The structure of ¹¹Li via ¹⁰Li

H.S. et al. Phys. Rev. Lett. **83** (1999) 496 Nucl. Phys. **A 791** (2007) 267

Confirmed eg @ GANIL (N.Orr, H.Al Falou) ¹¹Be, ^{14,15}B \rightarrow ⁹Li+n

GSI Helmholtzzentrum für Schwerionenforschung GmbH

N.B. Shulgina, B. Jonson, M.V.Zhukov Nucl. Phys. **A825**(2009)175

1/2)²: 479 3/2)²: 9%

10

2n pairs in ¹¹Li via opening angle (in average!) ? - there are two humps !

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Exotic structure across the dripline

P.G. Hansen, Nature 328 (1987) 476

Clean & unbiased production 2n halo nuclei as seeds, here ¹¹Li with known structure

Confirmed ¹⁴B @NSCL: PRL 109, 232501 (2012)
 → No problem for small relative neutron energies.

Ef2n (MeV)

Anomalous population of ¹⁰He states in reactions with ¹¹Li

P.G. Sharov,^{1,2} I.A. Egorova,^{3,2} and L.V. Grigorenko^{1,4,5}

P_{f-nn}

- Reduction (CMS, E*, rot. inv) 9 variables \rightarrow 2 variables (ϵ, θ)
 - ε is the fractional energy for a subsystem (e.g. $\varepsilon = E_{nn}/E_{nnf}$)
 - θ is the angle between the relative momenta (e.g. p_{nn} , p_{f-nn})
- Three body correlation function (expansion in hyperspherical harm.):

$$\mathsf{W}(arepsilon, heta) \propto rac{d^2\sigma}{darepsilon d heta d heta} \propto \sum_{lpha,lpha'} C^{\dagger}_{lpha'} C_{lpha} \, \mathcal{Y}^{\dagger}_{lpha'}(arepsilon, heta) \mathcal{Y}_{lpha}(arepsilon, heta)$$

Complex coefficients C depend on quantum numbers α={K,L,S,Ix,Iy}

GSI Helmholtzzentrum für Schwerionenforschung GmbH M.Meister, L.V. Chulkov, H.S., et al., PRL91 (2003) 16504

GSI Helmholtzzenarum für Genwenonemorsonung Gmon

Excitation spectrum ¹⁰He* JINR/ACCULINA

Theory <meets> Experiment ¹⁰He* excited

Lessons learned: Initial state and final state 1

- can be separated by measuring the correlations in the system.
- 2. The energy spectra are strongly influenced by the initial state and the reaction mechanism.
- 3 Data sets are otherwise often consistent.
- Interplay with theory 4. including structure and reaction theory is needed!

ε_{nn}

➔ Direct discussion ongoing !

10나

¹⁷Ne a potential 2p halo

^{"17}Ne is a proton-dripline nucleus, with strong indications of having a 2p – halo"

Zhukov & Thompson, PRC 52 (1995) 3505

W. Geithner, T.Neff et al, PRL **101** 252502 (2008)

- S_{2p} = 943 keV, S_p = 1479 keV
- $T_{1/2}$ = 109.2 ms (β^+ to ${}^{17}F$)

15**()**

¹⁷Ne

• Groundstate $J^{\pi}=1/2^{-}$; no bound exc. states

Large fraction of the valence protons in the classically forbidden region ?

Coulomb wall in addition to angular momentum barrier (s,d)... → search for strong s² configuration

- Grigorenko et al., PRC 71 (2005) 051604(R).
 ≫3-body cluster model: s² content 48%.
- Geithner&Neff et al., PRL 101 (2008) 252502.
 ≻Charge radius measurement + FMD: 42% s².
- Tanaka et al., PRC 82 (2010) 044309.
 Reaction cross-sections: Long tail in ¹⁷Ne matter density, dominant s² configuration.
- Oishi et al., PRC 82 (2010) 024315.
 >3-body model: s² content 15%.

One-proton knockout from ¹⁷Ne – ¹⁶F relative energy Spectrum

F. Wamers

Halo-Proton Knockout from ¹⁷Ne: ¹⁶F (=¹⁵O+p) Transverse Momentum Distribution

F. Wamers

Glauber-type calculation (MOMDIS): 1s/0d single-particle p-removal from ¹⁶F+p *Bertulani et al., CPC 175 (2006) 372*

• s-wave c ont ents ~40% in the ¹⁷Ne halo

(p_x: 39.6 1.1 %, p_y: 40.4 1.1 %)

- Moderate halo character of ¹⁷Ne confirmed
- Good agreement with Grigorenko et al., and with Geithner/Neff et al.

Momentum Profile (¹⁶F)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Neutron Knockout from ¹⁷Ne: Unbound ¹⁶Ne

F. Wamers

One-neutron Knockout

¹⁶Ne relative energy spectrum

F. Wamers et al., PRL 112, 132502 (2014)

[11] G.J. KeKelis et al., Phys.
Rev. C 17, 1929 (1978).
[12] G.R. Burleson et al., Phys.
Rev. C 22, 1180 (1980).
[13] C.J. Woodward, R.E. Tribble and D.M. Tanner,
Phys. Rev. C 27, 27 (1983).
[14] K. Föhl et al., Phys. Rev.
Lett. 79, 3849 (1997).
[15] I. Mukha et al., Phys. Rev. C 79, 061301(R) (2009)

Confirmation of previous results. Narrow width for 1st and 2nd excited state.

K.W. Brown et al, Phys.Rev.Lett. 113, 232501 (2014) gs. Er=1.476(20) Γ<60keV "width puzzle"

→ Talk by Ivan Mukha

Crossing the Proton Dripline to ¹⁵Ne

F. Wamers

Two-neutron Knockout

¹³O + 2 proton FSI

- → ¹⁵Ne 3-body relativeenergy spectrum
- → 3-body angular correlations

First Observation and spectroscopy of ¹⁵Ne

H.T. Fortune, Phys. Lett. B 718, 1342 (2013)

¹⁵Ne Mass: prediction via mirror nuclei systematics

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Characterization of the decays

F. Wamers et al., PRL 112, 132502 (2014)

Calculation of ¹⁵Ne sequential decay via the ¹⁴F ground state

¹⁵Ne decay shows a genuine 3-body character, despite intermediate states in ¹⁴F.

Summary

- Nuclear systems at the extremes cleanly produced and analyzed
- Largest neutron/proton asymmetries
- Rôle of seed nuclei discussed, correlations analyzed
- Frontier line: Oxygen isotopes (²⁶O)

New Detectors → better sensitivity
New facilities → higher intensity

 \rightarrow f + n + n + n + n (e.g. ⁷H) in reach

Next Step: Novel neutron detector for R³B - NeuLAND demonstrator performance

Next step: R³B Time-of-flight detector prototyping

Next Step: The new FAIR facility

Intensity increase 3-4 orders of magnitude !

Y. Aksyutina, T. Aumann, H. Álvarez-Pol, T. LeBleis, E. Benjamim, J. Benlliure, K. Boretzky, M.J.G. Borge, C. Caesar, M.Caamaño, E. Casarejos, L.V. Chulkov, D. Cortina-Gil, K. Epinger, Th. W. Elze, H. Emling, C. Forssén, H. Geissel, R. Gernhäuser, M. Hellström, J. Holeczek, K.L. Jones, H. Johansson, B. Jonson, J.V. Kratz, R. Krücken, R. Kulessa, C.Langer, M. Lantz, Y. Leifels, A. Lindahl, K. Mahata, M. Meister, P. Maierbeck, K. Markenroth, G. Münzenberg, T. Nilsson, C. Nociforo, G. Nyman, R. Palit, M. Pantea, S. Paschalis, D.Pérez, M. Pfützner, V. Pribora, A. Prochazka, R. Reifarth, A. Richter, K. Riisager, C. Rodríguez, C. Scheidenberger, G. Schrieder, H. Simon, J. Stroth, K. Sümmerer, O. Tengblad, H. Weick, and M.V. Zhukov.

GSI, Darmstadt, Germany; Instito Estructura de la Materia, Madrid, Spain Kurchatov Institute, Moscow, Russia; Johann-Wolfgang- Goethe-Univ., Frankfurt, Germany; Chalmers Tekniska Högskola / Göteborgs Universitet, Göteborg, Sweden; Johannes-Gutenberg-Universität, Mainz, Germany; Universytet Jagiellonski, Kraków, Poland; University Santiago de Compostela, Spain; Technische Universität, Darmstadt, Germany; Technische Universität, München, Germany; CERN, Genève, Switzerland; Aarhus Universitet, Aarhus, Denmark

Aksouh, Farouk; Al-Khalili, Jim; Algora, Alejandro; Alkhasov, Georgij; Altstadt, Sebastian; Alvarez, Hector; Atar, Leyla; Audouin, Laurent; Aumann, Thomas; Pellereau, Eric; Martin, Julie-Fiona; Gorbinet, Thomas; Seddon, Dave; Kogimtzis, Mos; Avdeichikov, Vladimir; Barton, Charles; Bayram, Murat; Belier, Gilbert; Bemmerer, Daniel; Michael Bendel; Benlliure, Jose; Bertulani, Carlos; Bhattacharya, Sudeb; Bhattacharya, Chandana; Le Bleis, Tudi; Boilley, David; Boretzky, Konstanze; Borge, Maria Jose; Botvina, Alexander; Boudard, Alain; Boutoux, Guillaume; Boehmer, Michael; Caesar, Christoph; Calvino, Francisco; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Cederwall, Bo; Chapman, Robert; Alexandre Charpy; Chartier, Marielle; Chatillon, Audrey; Chen, Ruofu; Christophe, Mayri; Chulkov, Leonid; Coleman-Smith, Patrick; Cortina, Dolores; Crespo, Raquel; Csatlos, Margit; Cullen, David; Czech, Bronislaw; Danilin, Boris; Davinson, Tom; Paloma Diaz; Dillmann, Iris; Fernandez Dominguez, Beatriz; Ducret, Jean-Eric; Duran, Ignacio; Egelhof, Peter; Elekes, Zoltan; Emling, Hans; Enders, Joachim; Eremin, Vladimir; Ershov, Sergey N.; Ershova, Olga; Eronen, Simo; Estrade, Alfredo; Faestermann, Thomas; Fedorov, Dmitri; Feldmeier, Hans; Le Fevre, Arnaud; Fomichev, Andrey; Forssen, Christian; Freeman, Sean; Freer, Martin; Friese, Juergen; Fynbo, Hans; Gacsi, Zoltan; Garrido, Eduardo; Gasparic, Igor; Gastineau, Bernard; Geissel, Hans; Gelletly, William; Genolini, B.; Gerl, Juergen; Gernhaeuser, Roman; Golovkov, Mikhail; Golubev, Pavel; Grant, Alan; Grigorenko, Leonid; Grosse, Eckart; Gulyas, Janos; Goebel, Kathrin; Gorska, Magdalena; Haas, Oliver Sebastian; Haiduc, Maria; Hasegan, Dumitru; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Ana Henrigues; Hoffmann, Jan; Holl, Matthias; Hunyadi, Matyas; Ignatov, Alexander; Ignatyuk, Anatoly V.; Ilie, Cherciu Madalin; Isaak, Johann; Isaksson, Lennart; Jakobsson, Bo; Jensen, Aksel; Johansen, Jacob; Johansson, Hakan; Johnson, Ron; Jonson, Bjoern; Junghans, Arnd; Jurado, Beatriz; Jaehrling, Simon; Kailas, S.; Kalantar, Nasser; Kalliopuska, Juha; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Kezzar, Khalid; Khanzadeev, Alexei; Kissel, Robert; Kisselev, Oleg; Klimkiewicz, Adam; Kmiecik, Maria; Koerper, Daniel; Kojouharov, Ivan; Korsheninnikov, Alexei; Korten, Wolfram; Krasznahorkay, Attila; Kratz, Jens Volker; Kresan, Dima; Anatoli Krivchitch; Kroell, Thorsten; Krupko, Sergey; Kruecken, Reiner; Kulessa, Reinhard; Kurz, Nikolaus; Kuzmin, Eugenii; Labiche, Marc; Langanke, Karl-Heinz; Langer, Christoph; Lapoux, Valerie; Larsson, Kristian; Laurent, Benoit; Lazarus, Ian; Le, Xuan Chung; Leifels, Yvonne; Lemmon, Roy; Lenske, Horst; Lepine-Szily, Alinka; Leray, Sylvie; Letts, Simon; Li, Songlin; Liang, Xiaoving; Lindberg, Simon; Lindsay, Scott; Litvinov, Yuri; Lukasik, Jerzy; Loeher, Bastian; Mahata, Kripamay; Maj, Adam; Marganiec, Justyna; Meister, Mikael; Mittig, Wolfgang; Movsesvan, Alina; Mutterer, Manfred; Muentz, Christian; Nacher, Enrique; Najafi, Ali; Nakamura, Takashi; Neff, Thomas; Nilsson, Thomas; Nociforo, Chiara; Nolan, Paul; Nolen, Jerry; Nyman, Goran; Obertelli, Alexandre; Obradors, Diego; Ogloblin, Aleksey; Oi, Makito; Palit, Rudrajyoti; Panin, Valerii; Paradela, Carlos; Paschalis, Stefanos; Pawlowski, Piotr; Petri, Marina; Pietralla, Norbert; Pietras, Ben; Pietri, Stephane; Plag, Ralf; Podolyak, Zsolt; Pollacco, Emanuel; Potlog, Mihai; Datta Pramanik, Ushasi; Prasad, Rajeshwari; Fraile Prieto, Luis Mario; Pucknell, Vic; Galaviz -Redondo, Daniel; Regan, Patrick; Reifarth, Rene; Reinhardt, Tobias; Reiter, Peter; Rejmund, Fanny; Ricciardi, Maria Valentina; Richter, Achim; Rigollet, Catherine; Riisager, Karsten; Rodin, Alexander; Rossi, Dominic; Roussel-Chomaz, Patricia; Gonzalez Rozas, Yago; Rubio, Berta; Roeder, Marko; Saito, Takehiko; Salsac, Marie-Delphine; Rodriguez Sanchez, Jose Luis; Santosh, Chakraborty; Savajols, Herve; Savran, Deniz; Scheit, Heiko; Schindler, Fabia; Schmidt, Karl-Heinz; Schmitt, Christelle; Schnorrenberger, Linda; Schrieder, Gerhard; Schrock, Philipp; Sharma, Manoj Kumar; Sherrill, Bradley; Shrivastava, Aradhana; Shulgina, Natalia; Sidorchuk, Sergey; Silva, Joel; Simenel, Cedric; Simon, Haik; Simpson, John; Singh, Pushpendra Pal; Sonnabend, Kerstin; Spohr, Klaus; Stanoiu, Mihai; Stevenson, Paul; Strachan, Jon; Streicher, Brano; Stroth, Joachim; Syndikus, Ina; Suemmerer, Klaus; Taieb, Julien; Tain, Jose L.; Tanihata, Isao; Tashenov, Stanislav; Tassan-Got, Laurent; Tengblad, Olof; Teubig, Pamela; Thies, Ronja; Togano, Yasuhiro; Tostevin, Jeffrey A.; Trautmann, Wolfgang; Tuboltsev, Yuri; Turrion, Manuela; Typel, Stefan; Udias-Moinelo, Jose; Vaagen, Jan; Velho, Paulo; Verbitskaya, Elena; Veselsky, Martin; Wagner, Andreas; Walus, Wladyslaw; Wamers, Felix; Weick, Helmut; Wimmer, Christine; Winfield, John; Winkler, Martin; Woods, Phil; Xu, Hushan; Yakorev, Dmitry; Zegers, Remco; Zhang, Yu-Hu; Zhukov, Mikhail; Zieblinski, Miroslaw; Zilges, Andreas;