Nuclear aspects of the s process

Claudia Lederer

University of Edinburgh

Hirschegg 2015

Heavy element nucleosynthesis

Slow neutron capture process process

Astrophysical Sites

- AGB stars
- Massive stars

Nuclear Physics Input:

- β decay half lives
- <σ>.... Maxwellian Averaged Cross Section MACS

$$<\sigma>_{kT} = \frac{2}{\sqrt{\pi}} \frac{\int \sigma(E_n) E_n \exp(-E_n / kT) dE_n}{\int E_n \exp(-E_n / kT) dE_n}$$

Ultra Metal Poor Star Abundances

solar r-component:

$$N_r = N_{\rm sun} - N_s$$

- abundances scale with solar r process component
- indication for robust primary r process
- offset for A<130 \rightarrow indication for two r process components

Sneden at al. APJ533 (2000)

January, 16, 2015

www.cern.ch/ntof

www.cern.ch/ntof

www.cern.ch/ntof

Hirschegg

NTOF

www.cern.ch/ntof

Hirschegg

NTOF

www.cern.ch/ntof

January, 16, 2015

First n_TOF data ⁷³Ge(n,γ) - 2014

Measurement of all stable germanium isotopes

First n_TOF data ⁷³Ge(n,γ) - 2014

January, 16, 2015

First n_TOF data ⁷³Ge(n,γ) - 2014

New ⁶²Ni and ⁶³Ni data: Implications for the s process

Two burning stages in massive stars:

- He Core burning: kT~26 keV, N_n~10⁶ cm⁻³
- Carbon shell burning: kT~90 keV, N_n~10¹¹ cm⁻³

C. Lederer et al., PRL 110, 022501 (2013) C. Lederer et al., PRC 89, 025810 (2014)

Cosmic y ray emitter ²⁶Al

Intensity [ph cm² s¹ sr¹] x 10*

Main Origin of ²⁶Al in massive stars (Diehl et al, Nature 439 (2006))

- convective hydrogen burning in Wolf-Rayet stars followed by ejection by stellar wind
- convective Carbon shell burning followed by ejection from core collapse supernova
- explosive Ne/C burning in core collapse phase of supernova

Sensitivity study of ²⁶Al abundance in Massive stars

Factor changes of final $^{26}\mathrm{Al}^g$ abundance resulting from reaction rate variations for convective shell C/Ne burning^a, assuming five species of $^{26}\mathrm{Al}$

Reaction ^b	Rate multiplied by							
	100	10	2	0.5	0.1	0.01	Source ^c	Uncertainty ^d
${}^{26}{\rm Al}^g({\rm n,p})^{26}{\rm Mg} \\ {}^{25}{\rm Mg}({\rm p,\gamma})^{26}{\rm Al}^g \\ {}^{25}{\rm Mg}({\rm p,\gamma})^{26}{\rm Al}^m \\ {}^{26}{\rm Al}^g({\rm n,\alpha})^{23}{\rm Na} \\ {}^{26}{\rm Al}^m({\rm n,p})^{26}{\rm Mg} $	0.017 2.9 6.7 0.12 0.58	0.16 5.4 3.0 0.54 	0.63 1.5 	1.3 0.63 	1.9 0.35 0.75 	2.0 0.29 0.71 	present il10 il10 present present	$5\% \\ 6\%$

→ ²⁶Al(n,p) and ²⁶Al(n,α) reaction rates represent critical uncertainties for ²⁶Al material processed by explosive and convective burning in massive stars and ejected into the ISM by core collapse supernovae

C Iliadis et al., Ast. J. Supp. 193, 16 (2011)

²⁶Al +n reaction rates from previous measurements

C Iliadis et al., Ast. J. Supp. 193, 16 (2011)

²⁶Al +n measurement at GELINA

Edinburgh DSSD setup at GELINA (IRMM) [·]

Institute for Reference Materials and Measurements

In collaboration with: T. Davinson, A. Estrade, J. Heyse, C. Paradela, P. Schillebeeckxs, P. Woods

n_TOF EAR-2

EAR1

New beam line at CERN **n_TOF EAR-2** (first measurement autumn 2014) provides ~30 times higher neutron flux than at present

