\SFB膤
 DFG

Novel approach

to the hadronic LbL contribution to $(\mathrm{g}-2)_{\mu}$

Vladyslav Pauk

Johannes Gutenberg University

Mainz, Germany

Hadrons from Quarks and Gluons,
Hirschegg, Austria
January 12-18, 2014

The muon's anomalous magnetic moment

The muon's anomalous magnetic moment

The anomalous magnetic moment

magnetic dipole moment

$$
\vec{\mu}=g Q \mu_{0} \frac{\vec{\sigma}}{2}
$$

μ_{0} : Bohr magneton
Q: charge

The anomalous magnetic moment

magnetic dipole moment
gyromagnetic factor
$\vec{\mu}=g Q \mu_{0} \frac{\vec{\sigma}}{2}$
μ_{0} : Bohr magneton
Q: charge
g

The anomalous magnetic moment

magnetic dipole moment
gyromagnetic factor

$$
\vec{\mu}=g Q \mu_{0} \frac{\vec{\sigma}}{2}
$$

$$
g=2
$$

μ_{0} : Bohr magneton
Q: charge
Dirac theory (1928)
free electron

The anomalous magnetic moment

magnetic dipole moment

$$
g=2
$$

$$
a_{l} \equiv \frac{g-2}{2}
$$

$\mu_{0}:$ Bohr magneton
Q: charge
Dirac theory (1928)
free electron
anomalous moment

The anomalous magnetic moment

magnetic dipole moment

Schwinger (1948)
$a_{\mu}{ }^{\text {QED(1) }}=\alpha_{e m} / 2 \pi=0.001161$

$$
\vec{\mu}=g Q \mu_{0} \frac{\vec{\sigma}}{2}
$$

$\mu_{0}:$ Bohr magneton
Q: charge
Dirac theory (1928)

$$
a_{l} \equiv \frac{g-2}{2}
$$

$$
g=2
$$

free electron
anomalous moment

The anomalous magnetic moment

magnetic dipole moment

gyromagnetic factor

Schwinger (1948)

$a_{\mu}{ }^{\operatorname{QED}(1)}=\alpha_{e m} / 2 \pi=0.001161$

$$
\vec{\mu}=g Q \mu_{0} \frac{\vec{\sigma}}{2}
$$

$\mu_{0}:$ Bohr magneton
Q: charge
Dirac theory (1928)
free electron
anomalous moment

Kinoshita (2012)

$a_{\mu}{ }^{\text {QED (5) }}=(11658471.896 \pm 0.008) \cdot 10^{-10}$ up to $\alpha_{e m}{ }^{5}$!

(g-2) μ : theory vs experiment

present theoretical SM value

$$
a_{\mu} \mathrm{SM}=(11659184.0 \pm 5.9) \times 10^{-10}
$$

$$
\begin{aligned}
& \text { BNL-E821 (wor } \\
& 0 \pm 63 \\
& \text { JN } 09 \text { (} \mathrm{e}^{+} \mathrm{e}^{-} \text {-based) }
\end{aligned}
$$

$$
-299 \pm 65
$$

DHMZ 10 (τ-based)

$$
-195 \pm 54
$$

DHMZ $10\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$
-287 ± 49

HLMNT 11 ($\mathrm{e}^{+} \mathrm{e}^{-}$)
-261 ± 49

E821 measurement of $(\mathrm{g}-2)_{\mu}$ (2009)

$$
a_{\mu} \exp ^{\exp (11659208.9 \pm 6.3) \times 10^{-10}, ~}
$$

(g-2) μ : theory vs experiment

present theoretical SM value
E821 measurement of $(\mathrm{g}-2)_{\mu}$ (2009)

$(\mathrm{g}-2)_{\mu}$: theory vs experiment

present theoretical SM value
E821 measurement of $(\mathrm{g}-2)_{\mu}$ (2009)

$(\mathrm{g}-2)_{\mu}$: theory vs experiment

present theoretical SM value

$$
a_{\mu} \mathrm{SM}=(11659184.0 \pm 5.9) \times 10^{-10}
$$

$$
\begin{aligned}
& \mathrm{BNL}-\mathrm{E8} 21 \text { (world average) } \\
& \mathrm{O} \pm 63 \\
& \mathrm{JN} 09\left(\mathrm{e}^{+} \mathrm{e}^{-}\right. \text {-based) } \\
& -299 \pm 65 \\
& \mathrm{DHMZ} 10(\tau \text {-based }) \\
& -195 \pm 54 \\
& \text { DHMZ } 10\left(\mathrm{e}^{+} \mathrm{e}^{-}\right) \\
& -287 \pm 49 \\
& \mathrm{HLMNT} 11\left(\mathrm{e}^{+} \mathrm{e}^{-}\right) \\
& -261 \pm 49
\end{aligned}
$$

E821 measurement of $(\mathrm{g}-2)_{\mu}$ (2009)
$a_{\mu}{ }^{\exp }=(11659208.9 \pm 6.3) \times 10^{-10}$
discrepancy between theory and experiment
$a_{\mu} \exp -a_{\mu}^{\text {th }}=(24.9 \pm 8.7) \times 10^{-10}$
(2.9 σ) New Physics?

```
error(s)!
```

new FNAL (g-2) μ measurement (2015):
factor 4 precision improvement

$$
\pm 1.6 \cdot 10^{-10}
$$

$(\mathrm{g}-2)_{\mu}$: theory vs experiment

present theoretical SM value

$$
a_{\mu} \mathrm{SM}=(11659184.0 \pm 5.9) \times 10^{-10}
$$

$$
\begin{aligned}
& \mathrm{BNL}-E 821 \text { (world average) } \\
& 0 \pm 63 \\
& \mathrm{JN} 09\left(\mathrm{e}^{+} \mathrm{e}^{-}\right. \text {-based) } \\
& -299 \pm 65 \\
& \mathrm{DHMZ} 10(\tau \text {-based }) \\
& -195 \pm 54 \\
& \mathrm{DHMZ} 10\left(\mathrm{e}^{+} \mathrm{e}^{-}\right) \\
& -287 \pm 49 \\
& \mathrm{HLMNT} 11\left(\mathrm{e}^{+} \mathrm{e}^{-}\right) \\
& -261 \pm 49
\end{aligned}
$$

E821 measurement of $(\mathrm{g}-2)_{\mu}$ (2009)
$a_{\mu}{ }^{\exp }=(11659208.9 \pm 6.3) \times 10^{-10}$
discrepancy between theory and experiment
$a_{\mu} \exp -a_{\mu}^{\text {th }}=(24.9 \pm 8.7) \times 10^{-10}$
(2.9 σ) New Physics?

```
error(s)!
```

new FNAL (g-2) μ measurement (2015):
factor 4 precision improvement

$$
\pm 1.6 \cdot 10^{-10}
$$

improve theory!

(g-2) μ : SM predictions \& uncertainties

```
sensitivity of \((\mathrm{g}-2)_{\mu}\) experiments to various corrections
```


(g-2) μ : SM predictions \& uncertainties

sensitivity of $(\mathrm{g}-2)_{\mu}$ experiments
 to various corrections

```
experiments
```

future BNL CERN CERN
FNAL 200619761968

theory corrections
hadronic vacuum polarization (VP)

hadronic VP determined by cross section measurements of $e^{+} e^{-}->$hadrons

$$
a_{\mu}{ }^{\text {had, } V P}=(692.3 \pm 4.2) \times 10^{-10}
$$

(g-2) μ : SM predictions \& uncertainties

sensitivity of $(\mathrm{g}-2)_{\mu}$ experiments
 to various corrections

```
experiments
```

future BNL CERN CERN
FNAL 200619761968

theory corrections
hadronic vacuum polarization (VP)

hadronic VP determined by cross section measurements of $e^{+} e^{-}->$hadrons

$$
a_{\mu}{ }^{\text {had, } V P}=(692.3 \pm 4.2) \times 10^{-10}
$$

hadronic light-by-light scattering (LbL)

measurements of meson transition form factors required as input to reduce uncertainty

Models of hadronic LbL scattering

```
hadronic LbL correction
```


Models of hadronic LbL scattering

multi-scale problem mixed soft - hard regions

Models of hadronic LbL scattering

multi-scale problem mixed soft - hard regions
general solution from the first principles is not available

Models of hadronic LbL scattering

general solution from the first principles is not available
multi-scale problem mixed soft - hard regions

Models of hadronic LbL scattering

multi-scale problem mixed soft - hard regions
general solution from the first principles is not available
chiral expansion
$1 / N_{c}$ - expansion

Models of hadronic LbL scattering

multi-scale problem mixed soft - hard regions
general solution from the first principles is not available

Models of hadronic LbL scattering

general solution from the first principles is not available
multi-scale problem mixed soft - hard regions

| Contribution | BPP | HKS | KN | MV | BP | PdRV | N/JN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi^{0}, \eta, \eta^{\prime}$ | 85 ± 13 | 82.7 ± 6.4 | 83 ± 12 | 114 ± 10 | - | 114 ± 13 | 99 ± 16 |
| π, K loops | -19 ± 13 | -4.5 ± 8.1 | - | - | - | -19 ± 19 | -19 ± 13 |
| π, K loops + other subleading in N_{c} | - | - | - | 0 ± 10 | - | - | - |
| axial vectors | 2.5 ± 1.0 | 1.7 ± 1.7 | - | 22 ± 5 | - | 15 ± 10 | 22 ± 5 |
| scalars | -6.8 ± 2.0 | - | - | - | - | -7 ± 7 | -7 ± 2 |
| quark loops | 21 ± 3 | 9.7 ± 11.1 | - | - | - | 2.3 | 21 ± 3 |
| total | 83 ± 32 | 89.6 ± 15.4 | 80 ± 40 | 136 ± 25 | 110 ± 40 | 105 ± 26 | 116 ± 39 |

Single-meson contributions to the $(\mathrm{g}-2)_{\mu}$

Single-meson contribution

Single-meson contribution

$a_{\mu}=\lim _{k \rightarrow 0} F_{2}\left(k^{2}\right)$
Pauli form factor
two-loop
Feynman integral
$\int \mathrm{d}^{4} q_{1} \int \mathrm{~d}^{4} q_{2}$

Single-meson contribution

$a_{\mu}=\lim _{k \rightarrow 0} F_{2}\left(k^{2}\right)$	two-loop Feynman integral
Pauli form factor	$\int \mathrm{d}^{4} q_{1} \int \mathrm{~d}^{4} q_{2}$

 LbL scattering tensor

Single-meson contribution

)
\(\left.\begin{array}{c}F\left(Q_{1}, Q_{2}, P\right)

non-

perturbative

dynamics\end{array}\right) \quad\)| off-shell |
| :---: |
| information? |

Single-meson contribution

Single-meson contribution

Single-meson contribution

$$
\begin{aligned}
& a_{\mu}^{L b L}=\frac{-e^{6}}{48 m} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \int \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{1}{q_{1} q_{n}^{2}\left(q_{1}+q_{2}\right)^{2}} \frac{1}{\left(p+q_{1}\right)^{2}-m^{2}\left(p-q_{2}\right)^{2}-m^{2}} \\
& \times \frac{F\left(q_{1}^{2},\left(q_{1}+q_{2}\right)^{2}\right) F\left(q_{2}^{2}, 0\right)}{q_{2}^{2}-m_{P}^{2}} T_{a b}\left(q_{1}, q_{2}, p\right)+\frac{1}{\left(q_{1}^{2}, q_{2}^{2}\right) F\left(\left(q_{1}+q_{2}\right)^{2}, 0\right)} \\
& \left(q_{1}+q_{2}\right)^{2}-m_{P}^{2}
\end{aligned} T_{c}\left(q_{1}, q_{2}, p\right)
$$

Single-meson contribution

$$
\left(\begin{array}{c|c|l|l}
a_{\mu}^{L b L}=\frac{-e^{6}}{48 m} N \frac{\mathrm{~d}^{4} q_{1}}{(2 \pi)^{4}} \int \frac{\mathrm{~d}^{4} q_{2}}{(2 \pi)^{4}} \frac{1}{q_{1} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}} \frac{1}{\left(p+q_{1}\right)^{2}-m^{2}} \frac{1}{\left(p-q_{2}\right)^{2}-m^{2}} \\
\times \\
\times \frac{F\left(q_{1}^{2},\left(q_{1}+q_{2}\right)^{2}\right) F\left(q_{2}^{2}, 0\right)}{q_{2}^{2}-m_{P}^{2}} T_{a b}\left(q_{1}, q_{2}, p\right)+\frac{F\left(q_{1}^{2}, q_{2}^{2}\right) F\left(\left(q_{1}+q_{2}\right)^{2}, 0\right)}{\left(q_{1}+q_{2}\right)^{2}-m_{P}^{2}} T_{c}\left(q_{1}, q_{2}, p\right)
\end{array}\right.
$$

large $-\mathrm{N}_{\mathrm{c}}$
short-distance QCD constraints
pseudoscalar poles: $\pi^{0}, \eta, \eta^{\prime}$

Knecht, Nyffeler (2001)

$\mathrm{A} \gamma^{*} \gamma$ transition amplitude

dipole parametrization
$A \rightarrow \gamma \gamma$ transition FF :

$$
\begin{aligned}
& \frac{A\left(Q_{1}^{2}, 0\right)}{A(0,0)}=\frac{1}{\left(1+Q_{1}^{2} / \Lambda_{A}^{2}\right)^{2}} \\
& {[A(0,0)]^{2}=\frac{12}{\pi \alpha^{2}} \frac{1}{m_{A}^{2}} \Gamma_{\gamma \gamma}}
\end{aligned}
$$

$\mathrm{A} \gamma^{*} \gamma$ transition amplitude

dipole parametrization $A \rightarrow \gamma \gamma$ transition FF :

$$
\begin{aligned}
& \frac{A\left(Q_{1}^{2}, 0\right)}{A(0,0)}=\frac{1}{\left(1+Q_{1}^{2} / \Lambda_{A}^{2}\right)^{2}} \\
& {[A(0,0)]^{2}=\frac{12}{\pi \alpha^{2}} \frac{1}{m_{A}^{2}} \Gamma_{\gamma \gamma}}
\end{aligned}
$$

for 2γ decay widths $\Gamma_{\nu \nu}$ and dipole masses Λ_{A} entering the FF, we use the experimental results from the L3 Collaboration.

Two-dimensional representation

$$
a_{\mu}^{L b L}=\frac{\alpha}{(2 \pi)^{2}} \frac{\Lambda_{A 1}^{6} \Lambda_{A 2}^{6} \tilde{\Gamma}_{\gamma \gamma}(A)}{m m_{A}^{5}} \int \mathrm{~d} Q_{1} \int \mathrm{~d} Q_{2}\left[2 w_{a}\left(Q_{1}, Q_{2}\right)+w_{c}\left(Q_{1}, Q_{2}\right)\right]
$$

Two-dimensional representation

Two-dimensional representation

	m_{A} $[\mathrm{MeV}]$	$\tilde{\Gamma}_{\gamma \gamma}$ $[\mathrm{keV}]$	Λ_{A} $[\mathrm{MeV}]$	$a_{\mu}^{L b L ; A} \times 10^{10}$
$f_{1}(1285)$	1281.8 ± 0.6	3.5 ± 0.8	1040 ± 78	$0.50_{-0.17}^{+0.20}$
$f_{1}(1420)$	1426.4 ± 0.9	3.2 ± 0.9	926 ± 78	$0.14_{-0.06}^{+0.07}$

the contribution of the axial-vector pole to the $(\mathrm{g}-2)_{\mu}$
M. Vanderhaeghen (2014)
...scalar and tensor mesons? $f_{0}, f_{2}, a_{0}, a_{2}$, etc.
experimental information is very limited!
light-by-light scattering sum rules

Sum rules

micro-causality

Sum rules

micro-causality

dispersion
theory

Sum rules
micro-causality

Sum rules

$$
\begin{aligned}
& \operatorname{Im} f^{(-)}(s)=-\frac{s}{8}\left[\sigma_{2}(s)-\sigma_{0}(s)\right] \\
& \operatorname{Im} f^{(+)}(s)=-\frac{s}{8}\left[\sigma_{t o t}(s)\right]
\end{aligned}
$$

Sum rules

Sum rules

micro-causality
real part of the amplitude gauge symmetry \rightarrow low-energy
structure of the elastic LbL scattering:
$\mathcal{L}^{(8)}=c_{1}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+c_{2}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}$
Euler, Heisenberg (1936)

$$
\int_{s_{0}}^{\infty} \frac{\mathrm{d} s}{s}\left[\sigma_{2}(s)-\sigma_{0}(s)\right]=0
$$

imaginary part of the amplitude -photon-photon fusion into leptons and hadrons:

$$
\begin{aligned}
& \operatorname{Im} f^{(-)}(s)=-\frac{s}{8}\left[\sigma_{2}(s)-\sigma_{0}(s)\right] \\
& \operatorname{Im} f^{(+)}(s)=-\frac{s}{8}\left[\sigma_{t o t}(s)\right] \\
& c_{1} \pm c_{2}=\frac{1}{8 \pi} \int_{s_{0}}^{\infty} \frac{\mathrm{d} s}{s^{2}}\left[\sigma_{\|}(s) \pm \sigma_{\perp}(s)\right]
\end{aligned}
$$

Meson production

- the SRs hold separately for channels of given intrinsic quantum numbers: isoscalar and isovector mesons, cc states
- input for the absorptive part of the SRs: $\gamma \gamma$ hadrons response functions, can be expressed in terms of $\gamma \gamma \rightarrow \mathrm{M}$ transition form factors

Meson production

- the SR hold separately for channels of given intrinsic quantum numbers: isoscalar and isovector mesons, cc states
- input for the absorptive part of the SRs: $\gamma \gamma$ hadrons response functions, can be expressed in terms of $\gamma \gamma \rightarrow \mathrm{M}$ transition form factors

isoscalar light quark states:

the contribution of n, η^{\prime}
is entirely compensated by $f_{2}(1270), f_{2}(1565)$ and $f_{2}{ }^{\prime}(1525)$

Meson production in $\gamma^{*} \gamma$ collision: TFF

at finite $Q_{1}{ }^{2}$ the SR imply information on meson transition form-factors:

Meson production in $\gamma^{*} \gamma$ collision: TFF

at finite $Q_{1}{ }^{2}$ the SR imply information on meson transition form-factors:
estimate for the $f_{2}(1270)$ tensor $F F$ in terms of the η, η^{\prime} and $\mathrm{f}_{1} \mathrm{FFs}$

$$
0=\int_{s_{0}}^{\infty} d s \frac{1}{\left(s+Q_{1}^{2}\right)}\left[\sigma_{2}-\sigma_{0}\right]_{Q_{2}^{2}=0}
$$

-. $f_{1}(1285), f_{1}(1420) L 3$

- $\quad \eta, \eta^{\prime}$ BaBer

$$
0=\int_{s_{0}}^{\infty} d s \frac{1}{\left(s+Q_{1}^{2}\right)^{2}}\left[\sigma_{\|}+\sigma_{L T}+\frac{\left(s+Q_{1}^{2}\right)}{Q_{1} Q_{2}} \tau_{T L}^{a}\right]_{Q_{2}^{2}=0}
$$

$$
\text { direct measurements } \longrightarrow \text { BES III }
$$

Scalars and tensors: results

contribution of the narrow scalar resonances

	m_{M} $[\mathrm{MeV}]$	$\Gamma_{\gamma \gamma}$ $[\mathrm{keV}]$	$a_{\mu}\left(\Lambda_{\text {mono }}=1 \mathrm{GeV}\right)$ $\left[10^{-11}\right]$	$a_{\mu}\left(\Lambda_{\text {mono }}=2 \mathrm{GeV}\right)$ $\left[10^{-11}\right]$
$f_{0}(980)$	980 ± 10	0.29 ± 0.07	-0.19 ± 0.05	-0.61 ± 0.15
$f_{0}^{\prime}(1370)$	$1200-1500$	3.8 ± 1.5	-0.54 ± 0.21	-1.84 ± 0.73
$a_{0}(980)$	980 ± 20	0.3 ± 0.1	-0.20 ± 0.07	-0.63 ± 0.21
Sum			-0.9 ± 0.2	-3.1 ± 0.8

contribution of the narrow tensor resonances

	m_{M} $[\mathrm{MeV}]$	$\Gamma_{\gamma \gamma}$ $[\mathrm{keV}]$	$a_{\mu}\left(\Lambda_{\text {dip }}=1.5 \mathrm{GeV}\right)$ $\left[10^{-11}\right]$
$f_{2}(1270)$	1275.1 ± 1.2	3.03 ± 0.35	0.79 ± 0.09
$f_{2}(1565)$	1562 ± 13	0.70 ± 0.14	0.07 ± 0.01
$a_{2}(1320)$	1318.3 ± 0.6	1.00 ± 0.06	0.22 ± 0.01
$a_{2}(1700)$	1732 ± 16	0.30 ± 0.05	0.02 ± 0.003
Sum			1.1 ± 0.1

Scalars and tensors: results

contribution of the narrow scalar resonances

	m_{M} $[\mathrm{MeV}]$	$\Gamma_{\gamma \gamma}$ $[\mathrm{keV}]$	$a_{\mu}\left(\Lambda_{\text {mono }}=1 \mathrm{GeV}\right)$ $\left[10^{-11}\right]$	$a_{\mu}\left(\Lambda_{\text {mono }}=2 \mathrm{GeV}\right)$ $\left[10^{-11}\right]$
$f_{0}(980)$	980 ± 10	0.29 ± 0.07	-0.19 ± 0.05	-0.61 ± 0.15
$f_{0}^{\prime}(1370)$	$1200-1500$	3.8 ± 1.5	-0.54 ± 0.21	-1.84 ± 0.73
$a_{0}(980)$	980 ± 20	0.3 ± 0.1	-0.20 ± 0.07	-0.63 ± 0.21
Sum			$-0.9 \pm 0.2)<-3.1 \pm 0.8)$	

contribution of the narrow tensor resonances

	m_{M} $[\mathrm{MeV}]$	$\Gamma_{\gamma \gamma}$ $[\mathrm{keV}]$	$a_{\mu}\left(\Lambda_{\text {dip }}=1.5 \mathrm{GeV}\right)$ $\left[10^{-11}\right]$
$f_{2}(1270)$	1275.1 ± 1.2	3.03 ± 0.35	0.79 ± 0.09
$f_{2}(1565)$	1562 ± 13	0.70 ± 0.14	0.07 ± 0.01
$a_{2}(1320)$	1318.3 ± 0.6	1.00 ± 0.06	0.22 ± 0.01
$a_{2}(1700)$	1732 ± 16	0.30 ± 0.05	0.02 ± 0.003
Sum			1.1 ± 0.1

(g-2) μ and dispersion relations

Dispersion approach

Dispersion approach

hadronic sector:
vacuum polarization in $\mathrm{g}-2$

Dispersion approach

hadronic sector: vacuum polarization in $\mathrm{g}-2$

$$
e^{+} e^{-}-\text {production of hadrons }
$$

dispersion relations

$$
\Pi\left(q^{2}\right)-\Pi(0)=\frac{q^{2}}{\pi} \int_{0}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \Pi(s)}{s\left(s-q^{2}\right)}
$$

Dispersion approach

hadronic sector: vacuum polarization in $\mathrm{g}-2$

the hadronic state has negative invariant mass: NO dispersion relation can be written!!

$$
\Pi\left(q^{2}\right)-\Pi(0)=\frac{q^{2}}{\pi} \int_{0}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \Pi(s)}{s\left(s-q^{2}\right)}
$$

$e^{+} e^{-}$- production of hadrons

dispersion relations

Scalar theory

Scalar theory

Scalar theory

Discontinuity
Generalized unitarity (Cutkosky rules)

$$
2 \operatorname{Disc} \mathcal{M}_{i f}=\sum_{n} \mathcal{M}_{i n} \mathcal{M}_{n f}^{*}
$$

Scalar theory

Dispersion relations

$$
F\left(q^{2}\right)=\frac{1}{\pi i} \int \frac{q^{\prime} \mathrm{d} q^{\prime}}{q^{\prime 2}-q^{2}} \operatorname{Disc} F\left(q^{\prime 2}\right)
$$

Discontinuity

Generalized unitarity (Cutkosky rules)

$$
2 \operatorname{Disc} \mathcal{M}_{i f}=\sum_{n} \mathcal{M}_{i n} \mathcal{M}_{n f}^{*}
$$

$\operatorname{Disc} F\left(q^{\prime 2}\right)=\operatorname{Disc}_{2} F\left(q^{\prime 2}\right)+\operatorname{Disc}_{3} F\left(q^{\prime 2}\right)$

$$
\left[\operatorname{Disc}_{2} F\left(q^{\prime 2}\right)\right]=\int \mathrm{d} \Phi_{2} \mathcal{M}_{1 \rightarrow 2} \mathcal{M}_{2 \rightarrow 2}^{*}
$$

$\left[\operatorname{Disc}_{3} F\left(q^{\prime 2}\right)\right]=\int \mathrm{d} \Phi_{3} \mathcal{M}_{1 \rightarrow 3} \mathcal{M}_{3 \rightarrow 2}^{*}$

Scalar theory

Scalar theory

Discontinuity

Discontinuity

Imaginary parts cancel: $\quad \operatorname{Im}\left[\operatorname{Disc}_{2} F\left(q^{\prime 2}\right)\right]+\operatorname{Im}\left[\operatorname{Disc}_{3} F\left(q^{\prime 2}\right)\right]=0$

Discontinuity

Imaginary parts cancel:

$$
\operatorname{Im}\left[\operatorname{Disc}_{2} F\left(q^{\prime 2}\right)\right]+\operatorname{Im}\left[\operatorname{Disc}_{3} F\left(q^{\prime 2}\right)\right]=0
$$

Discontinuity

Real parts

$100 * \Gamma(0)$

$\Gamma(0)$

Real parts

Real parts

Real parts

Real parts

Lb discontinuity

T - time-like

 information

S - time-like information

...towards a model independent evaluation

$\pi o \gamma^{*} \gamma^{*}$ transition FF

CMD-2

$\pi o \gamma^{*} \gamma^{*}$ transition FF

To $\gamma \gamma$ transition FF in the time-like region

$\pi o \gamma^{*} \gamma^{*}$ transition FF

CMD-2
$\pi \pi_{0} \gamma \gamma$ transition FF in the time-like region

$$
e^{+} e^{-} \text {colliders }
$$

To $\gamma \gamma$ transition FF in the space-like region

space-like region $Q_{2}{ }^{2}<40 \mathrm{GeV}^{2}$ for $Q_{1}{ }^{2}=0$

BES III

Perspectives \& conclusions

direct calculation in field theory does NOT give
needed precision!

Perspectives \& conclusions

direct calculation in field theory does NOT give need of experimental input needed precision!

Perspectives \& conclusions

direct calculation in field theory does NOT give need of experimental input needed precision!
estimates based on data:
light-quark states are dominating:
$\pi^{0}, \pi^{+} \pi^{-}, \eta, \eta^{\prime}, a_{1} \ldots$

Perspectives \& conclusions

direct calculation in field theory does NOT give needed precision!
estimates based on data:
light-quark states are dominating: need of experimental input

$$
\pi^{0}, \pi^{+} \pi^{-}, \eta, \eta^{\prime}, a_{1} \ldots
$$

Perspectives \& conclusions

direct calculation in field theory does NOT give needed precision!
need of experimental input
estimates based on data:
light-quark states are dominating:

$$
\pi^{0}, \pi^{+} \pi^{-}, \eta, \eta^{\prime}, a_{1} \ldots
$$

model dependence

> dispersion relations

Perspectives \& conclusions

direct calculation in field theory does NOT give needed precision!
need of experimental input
estimates based on data:
light-quark states are dominating:

$$
\pi^{0}, \pi^{+} \pi^{-}, \eta, \eta^{\prime}, a_{1} \ldots
$$

dispersion relations

allow to incorporate
non-perturbative information in terms of on-shell information -
can be measured in experiment!

Perspectives \& conclusions

direct calculation in field theory does NOT give needed precision!
need of experimental input
estimates based on data:
light-quark states are dominating:

$$
\pi^{0}, \pi^{+} \pi^{-}, \eta, \eta^{\prime}, a_{1} \ldots
$$

dispersion relations

allow to incorporate
non-perturbative information in terms of on-shell information -
can be measured in experiment!
time- and space-like data are needed

Thank you!

Friday, January 17, 14

