¶ SFB콜

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Novel approach t_{GP} the hadronic LbL contribution to $(g-2)_{\mu}$

Vladyslav Pauk Johannes Gutenberg University Mainz, Germany Hadrons from Quarks and Gluons, Hirschegg, Austria January 12–18, 2014

The muon's anomalous magnetic moment

The muon's anomalous magnetic moment

magnetic dipole moment

$$ec{\mu} = g \, Q \, \mu_0 rac{ec{\sigma}}{2}$$

 μ_0 : Bohr magneton

Q: charge

$(g-2)_{\mu}$: theory vs experiment

 $(g-2)_{\mu}$: theory vs experiment

 $(g-2)_{\mu}$: theory vs experiment

$(g-2)_{\mu}$: theory vs experiment

$(g-2)_{\mu}$: theory vs experiment

$(g-2)_{\mu}$: SM predictions & uncertainties

3

$(g-2)_{\mu}$: SM predictions & uncertainties

3

$(g-2)_{\mu}$: SM predictions & uncertainties

3

Friday, January 17, 14

Single-meson contributions to the (g-2) $_{\mu}$

5

two-loop Feynman integral

 \bigotimes

q₂

 \bigotimes

q₂

two-loop Feynman integral

Feynman integral $\int \mathrm{d}^4 q_1 \int \mathrm{d}^4 q_2 \qquad \mathsf{P}^1$

non-perturbative LbL scattering tensor

5

5

5

$A\gamma^*\gamma$ transition amplitude

6

dipole parametrization $A \rightarrow \gamma \gamma \gamma$ transition FF:

$$\frac{A(Q_1^2,0)}{A(0,0)} = \frac{1}{\left(1 + Q_1^2 / \Lambda_A^2\right)^2}$$

$$[A(0,0)]^{2} = \frac{12}{\pi \alpha^{2}} \frac{1}{m_{A}^{2}} \Gamma_{\gamma\gamma}$$

$A\gamma^*\gamma$ transition amplitude

dipole parametrization $A \rightarrow \gamma \gamma \gamma$ transition FF:

$$\frac{A(Q_1^2,0)}{A(0,0)} = \frac{1}{\left(1 + Q_1^2 / \Lambda_A^2\right)^2}$$

$$[A(0,0)]^2 = \frac{12}{\pi \alpha^2} \frac{1}{m_A^2} \Gamma_{\gamma\gamma}$$

for 2 γ decay widths $\Gamma_{\gamma \gamma}$ and dipole masses Λ_A entering the FF, we use the experimental results from the L3 Collaboration.

	m_A [MeV]	$ ilde{\Gamma}_{\gamma\gamma} \ [ext{keV}]$	$\Lambda_A \ [{ m MeV}]$
$f_1(1285)$	1281.8 ± 0.6	3.5 ± 0.8	1040 ± 78
$f_1(1420)$	1426.4 ± 0.9	3.2 ± 0.9	926 ± 78

L3 Collaboration

Two-dimensional representation

Two-dimensional representation

Two-dimensional representation

...scalar and tensor mesons? f_0 , f_2 , a_0 , a_2 , etc.

experimental information is very limited!

Meson production

JPC

 the SRs hold separately for channels of given intrinsic quantum numbers: isoscalar and isovector mesons, cc states

• input for the absorptive part of the SRs: $\gamma \gamma$ hadrons response functions, can be expressed in terms of $\gamma \gamma \rightarrow M$ transition form factors

Meson production

 the SRs hold separately for channels of given intrinsic quantum numbers: isoscalar and isovector mesons, cc states

• input for the absorptive part of the SRs: $\gamma \gamma$ hadrons response functions, can be expressed in terms of $\gamma \gamma \rightarrow M$ transition form factors

isoscalar light quark states:

TPC

the contribution of η , η' is entirely compensated by f₂(1270), f₂(1565) and f₂'(1525)

	$\int \frac{ds}{s} \left(\sigma_2 - \sigma_0\right)$ [nb]
η	-191 ± 10
η'	-300 ± 10
<i>f</i> ₀ (980)	-19 ± 5
<i>f</i> ' ₀ (1370)	-91 ± 36
<i>f</i> ₂ (1270)	449 ± 52
f ₂ (1525)	7 ± 1
<i>f</i> ₂ (1565)	56 ± 11
Sum	-89 ± 66

Meson production in $\gamma^*\gamma$ collision: TFF

at finite Q_1^2 the SRs imply information on

10

meson transition form-factors:

Meson production in $\gamma^*\gamma$ collision: TFF

10

Friday, January 17, 14

Scalars and tensors: results

contribution of the narrow scalar resonances

	m_M	$\Gamma_{\gamma\gamma}$	$a_{\mu} (\Lambda_{mono} = 1 \text{ GeV})$	$a_{\mu} (\Lambda_{mono} = 2 \text{ GeV})$
	[MeV]	[keV]	$[10^{-11}]$	$[10^{-11}]$
$f_0(980)$	980 ± 10	0.29 ± 0.07	-0.19 ± 0.05	-0.61 ± 0.15
$f_0'(1370)$	1200 - 1500	3.8 ± 1.5	-0.54 ± 0.21	-1.84 ± 0.73
$a_0(980)$	980 ± 20	0.3 ± 0.1	-0.20 ± 0.07	-0.63 ± 0.21
Sum			-0.9 ± 0.2	-3.1 ± 0.8

contribution of the narrow tensor resonances

	m_M $[{ m MeV}]$	$\Gamma_{\gamma\gamma} \ [\mathrm{keV}]$	$a_{\mu} \ (\Lambda_{dip} = 1.5 \text{ GeV})$ [10 ⁻¹¹]
$f_2(1270)$	1275.1 ± 1.2	3.03 ± 0.35	0.79 ± 0.09
$f_2(1565)$	1562 ± 13	0.70 ± 0.14	0.07 ± 0.01
$a_2(1320)$	1318.3 ± 0.6	1.00 ± 0.06	0.22 ± 0.01
$a_2(1700)$	1732 ± 16	0.30 ± 0.05	0.02 ± 0.003
Sum			1.1 ± 0.1

Scalars and tensors: results

contribution of the narrow scalar resonances

	m_M	$\Gamma_{\gamma\gamma}$	$a_{\mu} (\Lambda_{mono} = 1 \text{ GeV})$	$a_{\mu} (\Lambda_{mono} = 2 \text{ GeV})$
	[MeV]	$[\mathrm{keV}]$	$[10^{-11}]$	$[10^{-11}]$
$f_0(980)$	980 ± 10	0.29 ± 0.07	-0.19 ± 0.05	-0.61 ± 0.15
$f_0'(1370)$	1200 - 1500	3.8 ± 1.5	-0.54 ± 0.21	-1.84 ± 0.73
$a_0(980)$	980 ± 20	0.3 ± 0.1	-0.20 ± 0.07	-0.63 ± 0.21
Sum			-0.9 ± 0.2	-3.1 ± 0.8

contribution of the narrow tensor resonances

	m_M $[{ m MeV}]$	$\Gamma_{\gamma\gamma} \ [\mathrm{keV}]$	$a_{\mu} \ (\Lambda_{dip} = 1.5 \text{ GeV})$ [10 ⁻¹¹]
$f_2(1270)$	1275.1 ± 1.2	3.03 ± 0.35	0.79 ± 0.09
$f_2(1565)$	1562 ± 13	0.70 ± 0.14	0.07 ± 0.01
$a_2(1320)$	1318.3 ± 0.6	1.00 ± 0.06	0.22 ± 0.01
$a_2(1700)$	1732 ± 16	0.30 ± 0.05	0.02 ± 0.003
Sum			1.1 ± 0.1

(g-2) $_{\mu}$ and dispersion relations

Dispersion approach

(12)

Dispersion approach

12

hadronic sector: vacuum polarization in g-2

Scalar theory

Dispersion relations

$$F(q^2) = \frac{1}{\pi i} \int \frac{q' dq'}{q'^2 - q^2} \text{Disc}F(q'^2)$$

13

Friday, January 17, 14

 \otimes

Scalar theory

Dispersion relations

$$F(q^2) = \frac{1}{\pi i} \int \frac{q' dq'}{q'^2 - q^2} \text{Disc}F(q'^2)$$

Discontinuity

Generalized unitarity (Cutkosky rules)

13

 \otimes

Scalar theory

Dispersion relations

$$F(q^2) = \frac{1}{\pi i} \int \frac{q' dq'}{q'^2 - q^2} \text{Disc}F(q'^2)$$

Discontinuity

Generalized unitarity (Cutkosky rules)

$$2\mathrm{Disc}\mathcal{M}_{if} = \sum_{n} \mathcal{M}_{in} \mathcal{M}_{nf}^*$$

13

$$\operatorname{Disc} F(q'^2) = \operatorname{Disc}_2 F(q'^2) + \operatorname{Disc}_3 F(q'^2)$$

$$\left[\operatorname{Disc}_{2}F(q^{\prime 2})\right] = \int \mathrm{d}\Phi_{2}\mathcal{M}_{1\to 2}\mathcal{M}_{2\to 2}^{*}$$

$$\left[\operatorname{Disc}_{3}F(q'^{2})\right] = \int \mathrm{d}\Phi_{3}\mathcal{M}_{1\to3}\mathcal{M}_{3\to2}^{*}$$

 \otimes

14

14

14

Friday, January 17, 14

14

Friday, January 17, 14

Real parts

15

... towards a model independent evaluation

$\pi_0 \gamma^* \gamma^*$ transition FF

$\pi_0 \gamma^* \gamma^*$ transition FF

direct calculation in field theory does NOT give needed precision!

direct calculation in field theory does NOT give needed precision!

need of experimental input

direct calculation in field theory does NOT give needed precision!

need of experimental input

estimates based on data:

light-quark states are dominating: π^{0} , π^{+} π^{-} , η , η ', a_{1} ...

direct calculation in field theory does NOT give needed precision!

need of experimental input

estimates based on data:

light-quark states are dominating: π^{0} , π^{+} π^{-} , η , η ', a_{1} ... model dependence

direct calculation in field theory does NOT give needed precision!

need of experimental input

estimates based on data:

light-quark states are dominating: π^{0} , π^{+} π^{-} , η , η ', a_{1} ... model dependence

dispersion relations

direct calculation in field theory does NOT give needed precision!

need of experimental input

estimates based on data:

light-quark states are dominating: π^{0} , π^{+} π^{-} , η , η' , a_{1} ... model dependence

dispersion relations

allow to incorporate non-perturbative information in terms of on-shell information – can be measured in experiment!

direct calculation in field theory does NOT give needed precision!

need of experimental input

estimates based on data:

light-quark states are dominating: π^{0} , π^{+} π^{-} , η , η' , a_{1} ... model dependence

dispersion relations

allow to incorporate non-perturbative information in terms of on-shell information – can be measured in experiment!

time- and space-like data are needed

Thank you!

Friday, January 17, 14