Hirschegg2014

Hadrons from Quarks and Gluons International Workshop XLII on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria, January 17, 2014

Composite and elementary natures of hadron resonances

Hideko Nagahiro^{A,B}, Atsushi Hosaka^B ^A Nara Women's University, Japan ^B RCNP, Osaka University, Japan

References:

H. Nagahiro, and A. Hosaka, PRC88(2013)055203 (as PRC Editors' Suggestions H. Nagahiro, and A. Hosaka, in progress

Simple question : "How and how much they are mixed ? Can we estimate it?"

Mixing nature of σ (or $f_0(500)$) meson

Mixing nature of σ meson consisting of $\pi\pi$ composite and elementary meson

» within the *nonlinear* representation of the sigma model

$$|\sigma\rangle_{\rm phys} = C_1 |\pi_{\pi}\rangle + C_2 |\sigma\rangle$$

dynamically generated
resonance

$${\rm elementary"} (q\bar{q}) \\ {\rm particle}$$

in terms of two-level problem [Nagahiro-Hosaka, PRC88]

$$|a_1(1260)\rangle_{\text{phys}} = C_1 | \rho_{\pi}\rangle + C_2 | a_1 \rangle$$

Nagahiro *et al.*, PRD83(11)111504(R)

"Compositeness condition Z = 0" in the sigma model

» "compositeness condition Z = 0" ^[1-3] ⇔ "elementary component z^{22} " [1] S.Weinberg, PR137(65)B672 [2] D. Lurie, A.J.Macfarlane, PR136(64)B816 [3] T. Hyodo, D.Jido, A. Hosaka, PRC85(12)015201

3

Reduction to the *two-level problem* : disentangle the mixing

$$T = \frac{v_{con} + v_{pole}}{1 - (v_{con} + v_{pole})G} = (g_{R}, g) \left\{ \begin{pmatrix} s - s_{p} \\ s - m^{2} \end{pmatrix} - \begin{pmatrix} g G g_{R} G g \end{pmatrix} \right\}^{-1} \begin{pmatrix} g R \\ g \end{pmatrix}$$

$$= (\nearrow, \checkmark) \left\{ \begin{pmatrix} & & & \\ & & &$$

my question …

How is z^{22} related to the "compositeness condition $Z = 0^{\#[1-3]}$?

Nagahiro-Hosaka, in progress

[1] S.Weinberg, PR137(65)B672
[2] D. Lurie, A.J.Macfarlane, PR136(64)B816
[3] T.Hyodo, D.Jido, A. Hosaka, PRC85(12)015201

Compositeness condition Z = 0? \checkmark Elementary component z^{22} is :

... nothing but the wave function renormalization Z for the σ field in \mathcal{L}

$$z^{22} = Z = \left(1 - \frac{d\Pi(s)}{ds}\Big|_{s=m^{*2}}\right)^{-1}$$

where $\Pi(s) = 3\frac{(s - m_{\pi}^2)^2}{f_{\pi}^2}\frac{G}{1 - v_{con}G}$
 $Z^{22} \xrightarrow{m_0 \to \infty} 0 = \bigcirc + \bigcirc + \bigcirc + \dots + \dots$

 \checkmark "compositeness condition Z = 0 [1-3]" is also the wave function renormalization

S.Weinberg, PR137(65)B672
 D. Lurie, A.J.Macfarlane, PR136(64)B816
 T.Hyodo, D.Jido, A. Hosaka, PRC85(12)015201

another question arises ...

We have another model Lagrangian : the sigma model in the *linear representation* Do we get the same conclusion $(Z \rightarrow 0 \text{ as } m_0 \rightarrow \infty)$?

- Pole position, scattering amplitude, ... etc. are the same in both models
 (= representation-independent)
- ✓ Which result should we believe ?
- ✓ Which "*Z*" corresponds to "compositeness condition *Z*" ?

 $z^{22} \leftrightarrow$ "compositeness condition Z = 0"?

the σ model in *non-linear* rep.

- $\checkmark \sigma \pi \pi$ is energy dependent
- 4π contact is **large** (attractive)

the σ model in *linear* rep.

- $\checkmark \sigma \pi \pi$ is energy independent
- 4π contact is **large** (repulsive)

→ neither $z^{22}(Z_{NL})$ nor Z_L ≠ "Compositeness condition" of Weinberg/Lurie's definition

We don't have a Yukawa theory equivalent with the sigma model.

...but we have a Yukawa-*like* theory...

Yukawa theory w/o four π ?

"elementary" and no contact

$$A^{NL}(s) = A^L(s) = A^Q(s)$$

All "representations" give the same scattering amplitude
 Definitions of the elementary *σ* field are different

- ✓ Z → 0 as $m_{\sigma} \rightarrow \infty$ in linear rep. / Z → 0 in nonlinear and "quasi-particle"
- \checkmark "Z" is not a universal measure
 - \rightarrow it depends on the definition of "elementary" particle
- ✓ We first need to define "what is the elementary particle".

Interpretations of the physical sigma pole m_{σ}^*

cut-off $\Lambda = 1 \text{ GeV} : m_0 \sim 9 \text{ GeV} \rightarrow m_\sigma^* = 465 - i200 \text{ MeV}$

Nonlinear rep.

[(400-550) - i(200-350) MeV PDG14]

- \checkmark Composite σ mixes with the elementary σ (two basis states)
- \checkmark physical pole position is very close to composite one
- ✓ physical σ is almost composite : $Z_{NL} \sim 0$

Linear rep.

- ✓ <u>No composite σ </u>
- ✓ elementary σ ($m_0 \sim 9$ GeV) goes down to 465 MeV by the quantum effect
- ✓ $Z_L \sim 1$ in the limit of $m_0 \to \infty$?

"quasi-particle" (Yukawa-like theory)

- ✓ No composite σ
- ✓ elementary σ (m₀~ 9 GeV) goes down to 465 MeV by the quantum effect
- \checkmark Z is small
- ✓ similar to Weinberg/Lurie's definition
- ✓ Yukawa-*like* sigma model ... *What is this "elementary* σ "...?

- » Mixing property of σ meson in nonlinear rep. by means of <u>two level prob.</u>
 - > Mixture of a $\pi\pi$ composite and "elementary" σ
 - > Physical σ is almost " $\pi\pi$ composite" and the component of "elementary" is small within the present model setting.

 $\Leftrightarrow a_1(1260)$ with hidden local symmetry, concluded that the physical a_1 has comparable amounts of $\pi\rho$ composite to elementary a_1 (PRD83(11)111504(R))

- » Representation dependence of wave function renormalization Z
 - $\rightarrow \quad \text{``Compositeness condition } Z = 0 \text{''} \leftrightarrow \ z^{22}$
 - > "Z" is not a universal measure
 - > <u>Generally</u>, it depends on the definition of "elementary particle" and it may not be a specific problem of σ
- **»** What is the most "economical" basis ?
 - > Or maybe we need to approach from different axis (such as behavior expected in finite T/ρ)