Composite and elementary natures of hadron resonances

Hideko Nagahiro ${ }^{\text {A,B }}$, Atsushi Hosaka ${ }^{\text {B }}$
${ }^{\text {A }}$ Nara Women's University, Japan
${ }^{\text {B }}$ RCNP, Osaka University, Japan

References:
H. Nagahiro, and A. Hosaka, PRC88(2013)055203

H. Nagahiro, and A. Hosaka, in progress

Introduction \& motivation

Internal structure of hadrons
Complex mass spectrum

$$
\mid \text { physical state }\rangle=C_{1}|\bigcirc\rangle+C_{2}|\bigcirc\rangle+\ldots
$$

Simple question : "How and how much they are mixed ? Can we estimate it?"

Mixing nature of σ (or $f_{0}(500)$) meson

Mixing nature of σ meson consisting of $\pi \pi$ composite and elementary meson

» within the nonlinear representation of the sigma model

$$
|\sigma\rangle_{\text {phys }}=C_{1}\left|\pi_{\pi}\right\rangle+C_{2}|\sigma\rangle
$$

dynamically generated
"elementary" $(q \bar{q})$ particle
in terms of two-level problem [Nagahiro-Hosaka, PRC88]

$$
\left|a_{1}(1260)\right\rangle_{\text {phys }}=C_{1} \mid \underset{\text { Nagahiro et al., PRD83(11)111504(R) }}{\left.\rho_{\pi}\right\rangle+C_{2}\left|a_{1}\right\rangle}
$$

"Compositeness condition $Z=0$ " in the sigma model
» "compositeness condition $Z=0$ " ${ }^{[1-3]}$
[1] S.Weinberg, PR137(65)B672
\Leftrightarrow "elementary component $z^{22 "}$
[2] D. Lurie, A.J.Macfarlane, PR136(64)B816
[3] T. Hyodo, D.Jido, A. Hosaka, PRC85(12)015201
$\pi \pi$ scattering amplitude in s-wave isoscaler channel

model Lagrangian : the sigma model in the nonlinear representation

$$
\begin{gathered}
\mathcal{L}=\frac{1}{4} \operatorname{tr}\left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right)+\frac{\mu^{2}}{4} \operatorname{tr}\left(\Sigma^{\dagger} \Sigma\right)-\frac{\lambda}{16}\left(\operatorname{tr}\left(\Sigma^{\dagger} \Sigma\right)\right)^{2}+a \operatorname{tr}\left(\Sigma^{\dagger} \Sigma\right) \\
\Sigma=\left(f_{\pi}+\sigma\right) U, \quad U=\exp \left(i \vec{\tau} \cdot \vec{\pi} / f_{\pi}\right)
\end{gathered}
$$

Composite σ

elementary $\boldsymbol{\sigma}$
dynamically generated s-wave resonance in chiral unitary approach

we keep the elementary σ field with a finite mass m_{0}

full $\pi \pi$ scattering amplitude

$$
\left.t_{\pi \pi \rightarrow \pi \pi}=\frac{v_{\text {con }}+v_{\text {pole }}}{1-\left(v_{\text {con }}+v_{\text {pole }}\right) G}, \quad v_{\text {con }}+v_{\text {pole }}=\lambda+\right\rangle
$$

Numerical results : pole-flow in complex-energy plane

Reduction to the two-level problem : disentangle the mixing

$$
\begin{aligned}
T= & \frac{v_{\text {con }}+v_{\text {pole }}}{1-}\left(v_{\text {con }}+v_{\text {pole }}\right) G
\end{aligned}=\left(\mathrm{g}_{\mathrm{R}}, \mathrm{~g}\right)\left\{\binom{\mathrm{s}-\mathrm{s}_{\mathrm{p}}}{\mathrm{~s}-\mathrm{m}^{2}}-\left(\begin{array}{c}
\mathrm{g}_{\mathrm{R}} \mathrm{Gg} \\
\mathrm{gGg}_{\mathrm{R}} \\
\mathrm{gGg}
\end{array}\right)\right\}^{-1}\binom{\mathrm{~g}_{\mathrm{R}}}{\mathrm{~g}}
$$

cf. in a simple Yukawa model $T_{\text {Yukawa }}=\left(g_{0} \sqrt{Z}\right)^{2} \frac{1}{s-M^{* 2}}$

$$
\left[\begin{array}{c}
\widehat{D} \xlongequal[D^{11}=\frac{z_{a}^{11}}{s-M_{a}^{2}}+\frac{z_{b}^{11}}{s-M_{b}^{2}}, \quad D^{22}=\frac{z_{a}^{22}}{\delta-M_{a}^{2}}+\frac{z_{b}^{22}}{s-M_{b}^{2}}]{|\sigma\rangle_{\text {phys }}=\sqrt{z_{a}^{11}}|\bigcirc\rangle+\sqrt{z_{a}^{22}}|>\rangle} .
\end{array}\right.
$$

Numerical results : residues ($m_{0}=550 \mathrm{MeV}$ case $)$

\star has larger contribution

Numerical results : bare σ mass m_{0} dependence

Numerical results : bare σ mass m_{0} dependence

How is z^{22} related to the "compositeness condition $Z=0{ }^{4}[1-3]$?

Nagahiro-Hosaka, in progress
[1] S.Weinberg, PR137(65)B672
[2] D. Lurie, A.J.Macfarlane, PR136(64)B816
[3] T.Hyodo, D.Jido, A. Hosaka, PRC85(12)015201

Compositeness condition $Z=0$?

\checkmark Elementary component z^{22} is :
... nothing but the wave function renormalization Z for the σ field in \mathcal{L}

$$
\begin{aligned}
& z^{22}=Z=\left(1-\left.\frac{d \Pi(s)}{d s}\right|_{s=m^{* 2}}\right)^{-1} \\
& \text { where } \Pi(s)=3 \frac{\left(s-m_{\pi}^{2}\right)^{2}}{f_{\pi}^{2}} \frac{G}{1-v_{c o n} G} \\
& z^{22} \xrightarrow{m_{0} \rightarrow \infty} 0
\end{aligned}
$$

\checkmark "compositeness condition $Z=0$ [1-3]" is also the wave function renormalization
[1] S.Weinberg, PR137(65)B672
[2] D. Lurie, A.J.Macfarlane, PR136(64)B816
[3] T.Hyodo, D.Jido, A. Hosaka, PRC85(12)015201
another question arises ...
We have another model Lagrangian : the sigma model in the linear representation
Do we get the same conclusion ($Z \rightarrow 0$ as $m_{0} \rightarrow \infty$) ?

The answer is "NO".

\checkmark Pole position, scattering amplitude, ... etc. are the same in both models (= representation-independent)
\checkmark Which result should we believe ?
\checkmark Which "Z" corresponds to "compositeness condition Z" ?

Compositeness condition

four-Fermi theory w/o "elementary"
Yukawa theory w/o four-Fermi

$$
\begin{aligned}
\mathcal{L}_{F}=-g_{0} \bar{\psi} \gamma_{5} \psi \bar{\psi} \gamma_{5} \psi & \mathcal{L}_{Y} & =i G_{0} \bar{\psi} \gamma_{5} \psi \phi \\
T_{F}=\frac{v_{F}}{1-v_{F} \Pi(s)} & T_{Y} & =G_{0} \frac{1}{s-m_{0}^{2}-G_{0}^{2} \Pi(s)} G_{0} \\
=>+><+><+\ldots & & =>+\langle+>-\cdots+\cdots \\
=>00000 & & =G_{R} \frac{1}{s-m^{* 2}-G_{R}^{2} \Pi_{c}^{\prime}(s)} G_{R} \\
Z=0 & &
\end{aligned}
$$

Yukawa theory is used as a tool to measure the "elementarity"
compositeness condition

$$
Z=1+G_{R}^{2} \Pi^{\prime}\left(m^{*}\right)=0
$$

w.f. renormalization of Yukawa theory
$z^{22} \leftrightarrow " c o m p o s i t e n e s s ~ c o n d i t i o n ~ Z=0 " ?$

the σ model in non-linear rep.
$\checkmark \sigma \pi \pi$ is energy dependent
$\checkmark 4 \pi$ contact is large (attractive)
the σ model in linear rep.
$\checkmark \sigma \pi \pi$ is energy independent
$\checkmark 4 \pi$ contact is large (repulsive)
\rightarrow neither $z^{22}\left(Z_{N L}\right)$ nor Z_{L}
\neq "Compositeness condition" of Weinberg/Lurie’s definition

We don't have a Yukawa theory equivalent with the sigma model.
...but we have a Yukawa-like theory...

Yukawa theory w/o four π ?

$$
\begin{aligned}
\mathcal{L}_{Y} & =G_{0} \phi_{\pi} \phi_{\pi} \phi_{\sigma} \\
T_{Y} & =G_{0} \frac{1}{s-m_{0}^{2}-G_{0}^{2} \Pi(s)} G_{0} \\
& =\rangle\langle+\rangle \bigcirc<+\cdots \\
& =G_{R} \frac{1}{s-m^{* 2}-G_{R}^{2} \Pi_{c}^{\prime}(s)} G_{R} \\
& =\rangle=
\end{aligned}
$$

compositeness condition

$$
Z_{Y}=1+G_{R}^{2} \Pi^{\prime}\left(m^{*}\right)=0
$$

w.f. renormalization of Yukawa theory

Yukawa-like model : "quasi-particle" representation

Nonlinear representation

$$
A^{N L}(s)=-\frac{1}{f_{\pi}^{2}}\left(s-m_{\pi}^{2}\right)+\frac{\left(s-m_{\pi}^{2}\right)^{2}}{f_{\pi}^{2}} \frac{1}{s-m_{\sigma}^{2}}
$$

linear representation

$$
A^{L}(s)=+\frac{1}{f_{\pi}^{2}}\left(m_{\sigma}^{2}-m_{\pi}^{2}\right)+\frac{\left(m_{\sigma}^{2}-m_{\pi}^{2}\right)^{2}}{f_{\pi}^{2}} \frac{1}{s-m_{\sigma}^{2}}
$$

"quasi-particle" representation ~ Yukawa-like

$$
A^{Q}(s)=0+\frac{\left(s-m_{\pi}^{2}\right)\left(\boldsymbol{m}_{\sigma}^{2}-m_{\pi}^{2}\right)}{f_{\pi}^{2}} \frac{1}{s-m_{\sigma}^{2}}
$$

"elementary" and no contact

$$
A^{N L}(s)=A^{L}(s)=A^{Q}(s)
$$

\checkmark All "representations" give the same scattering amplitude
\checkmark Definitions of the elementary σ field are different

Yukawa-like σ model

$\checkmark \mathrm{Z} \leftrightarrow 0$ as $\mathrm{m}_{\sigma} \rightarrow \infty$ in linear rep. / $Z \rightarrow 0$ in nonlinear and "quasi-particle"
\checkmark " Z " is not a universal measure
\rightarrow it depends on the definition of "elementary" particle
\checkmark We first need to define "what is the elementary particle" .

Interpretations of the physical sigma pole m_{σ}^{*}

cut-off $\Lambda=1 \mathrm{GeV}: m_{0} \sim 9 \mathrm{GeV} \rightarrow m_{\sigma}^{*}=465-i 200 \mathrm{MeV}$
Nonlinear rep.
[(400-550) $-i(200-350) \mathrm{MeV}$ PDG14]
\checkmark Composite σ mixes with the elementary σ (two basis states)
\checkmark physical pole position is very close to composite one
\checkmark physical σ is almost composite : $Z_{N L} \sim 0$
Linear rep.
\checkmark No composite σ
\checkmark elementary $\sigma\left(m_{0} \sim 9 \mathrm{GeV}\right)$ goes down to 465 MeV by the quantum effect
$\checkmark Z_{L} \sim 1$ in the limit of $m_{0} \rightarrow \infty$?
"quasi-particle" (Yukawa-like theory)
\checkmark No composite σ
\checkmark elementary $\sigma\left(\mathrm{m}_{0} \sim 9 \mathrm{GeV}\right)$ goes down to 465 MeV by the quantum effect
$\checkmark Z$ is small
\checkmark similar to Weinberg/Lurie's definition
\checkmark Yukawa-like sigma model ... What is this "elementary σ "...?

Summary

» Mixing property of σ meson in nonlinear rep. by means of two level prob.
, Mixture of a $\pi \pi$ composite and "elementary" σ
, Physical σ is almost " $\pi \pi$ composite" and the component of "elementary" is small within the present model setting.
$\Leftrightarrow a_{1}$ (1260) with hidden local symmetry, concluded that the physical a_{1} has comparable amounts of $\pi \rho$ composite to elementary a_{1} (PRD83(11)111504(R))
» Representation dependence of wave function renormalization Z
, "Compositeness condition $Z=0 " \leftrightarrow z^{22}$
, "Z" is not a universal measure
, Generally, it depends on the definition of "elementary particle" and it may not be a specific problem of σ
» What is the most "economical" basis ?
> Or maybe we need to approach from different axis (such as behavior expected in finite T / ρ)

