Hadron structure in Lattice QCD

C. Alexandrou

University of Cyprus and Cyprus Institute

Hadrons from Quarks and Gluons
International Workshop XLII on Gross Properties of Nuclei and Nuclear Excitations

Hirschegg 2014, Kleinwalsertal, Austria, January 12-18, 2014

Outline

(1) Lattice QCD

- Introduction
- Fermion actions
- Dynamical simulations - Computational cost
(2) Recent achievements
- Hadron spectrum
- Charmed baryons
- Meson decay constants - see H. Wittig's talk
- ρ-meson width
(3) Challenges
- Masses of excited states
- Nucleon Structure
- Axial charge g_{A}, momentum fraction $\langle x\rangle$ and σ-terms
- Spin content of the nucleon
- Hadron Structure
- Resonance parameters for baryons
- Axial charges and σ-terms

Quantum ChromoDynamics (QCD)

QCD-Gauge theory of the strong interaction
Lagrangian: formulated in terms of quarks and gluons

$$
\begin{aligned}
\mathcal{L}_{Q C D} & =-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum_{f=u, d, s, c, b, t} \bar{\psi}_{f}\left(i \gamma^{\mu} D_{\mu}-m_{f}\right) \psi_{f} \\
D_{\mu} & =\partial_{\mu}-i g \frac{\lambda^{a}}{2} A_{\mu}^{a}
\end{aligned}
$$

Harald Fritzsch

Murray Gell-Mann

Heinrich Leutwyler

This "simple" Lagrangian produces the amazingly rich structure of strongly interacting matter in the universe.

Numerical simulation of QCD provides essential input for a wide class of complex strong interaction phenomena \rightarrow In this talk: Hadron structure with emphasis on the nucleon

QCD on the lattice

Lattice QCD: K. Wilson, 1974 provided the formulation; M. Creutz, 1980 performed the first numerical simulation

- Discretization of space-time with lattice spacing a: quark fields $\psi(x)$ and $\bar{\psi}(x)$ on lattice sites and gauge field $U_{\mu}(x)$ on links
- Finite a provides an ultraviolet cutoff at $\pi / a \rightarrow$ non-perturbative regularization; Finite $L \rightarrow$ discrete momenta in units of $2 \pi / L$ if periodic b.c.
- Construct an appropriate action S and rotate into imaginary time \rightarrow Monte Carlo simulation to produce a representative ensemble of $\left\{U_{\mu}(x)\right\}$ using the largest supercomputers \rightarrow Observables: $\langle\mathcal{O}\rangle=\sum_{\left\{U_{\mu}\right\}} O\left(D^{-1}, U_{\mu}\right), D^{-1}$ is the fermion propagator

Fermion action

Several $\mathcal{O}(a)$-improved fermion actions, K. Jansen, Lattice 2008

Action	Advantages	Disadvantages
Clover improved Wilson	computationally fast	breaks chiral symmetry needs operator improvement
Twisted mass (TM)	computationally fast automatic improvement	breaks chiral symmetry violation of isospin
Staggered	computational fast	four doublers (fourth root issue) complicated contractions computationally demanding needs tuning
Domain wall (DW)	improved chiral symmetry	exact chiral symmetry

Several collaborations:

Clover	QCDSF, BMW, ALPHA, CLS, PACS-CS, NPQCD
Twisted mass	ETMC
Staggered	MILC
Domain wall	RBC-UKQCD
Overlap	JLQCD

Cost of simulations

Main cost due to fermions
Cost of dynamical quark simulations in 2001

Before the 21st century: neglect pair creation (quenched QCD)

21st century: Dynamical quark simulations

Simulation cost: $C_{\text {sim }}=C\left(\frac{300 \mathrm{MeV}}{m_{\pi}}\right)^{c_{m}}\left(\frac{L}{3 \mathrm{fm}}\right)^{C_{L}}\left(\frac{0.1 \mathrm{fm}}{a}\right)^{c_{a}}$
For $N_{f}=2$ Wilson fermion simulations in 2001: Number of inversions, step size in molecular dynamics and autocorrelations $\sim \frac{1}{m_{q}} \frac{1}{m_{q}} \frac{1}{m_{q}} \rightarrow\left(m_{\rho} / m_{\pi}\right)^{6}$ scaling.

Computational cost

Simulation cost: $C_{\text {sim }}=C\left(\frac{300 \mathrm{MeV}}{m_{\pi}}\right)^{c_{m}}\left(\frac{L}{3 \mathrm{fm}}\right)^{c_{L}}\left(\frac{0.1 \mathrm{fm}}{a}\right)^{c_{a}}$

Current simulations use improved algorithms
\Longrightarrow for twisted mass fermions: $c_{m} \sim 4 \rightarrow\left(m_{\rho} / m_{\pi}\right)^{4}$

- Simulations at physical quark masses, $a \sim 0.1 \mathrm{fm}$ and $L \sim 5 \mathrm{fm}$ are now feasible using Peta-scale computers
- The analysis to produce physics results also needs access to Peta-scale machines
\Longrightarrow progress depends crucially on access to Tier-0 machines
$N_{f}=2$ twisted mass, $\mathrm{L}=2.1 \mathrm{fm}, \mathrm{a}=0.089 \mathrm{fm}, \mathrm{K}$. Jansen and C. Urbach, arXiv:0905.3331

Systematic uncertainties

- Finite lattice spacing a - take the continuum limit $a \rightarrow 0$: \star
- Finite volume L - take infinite volume limit $L \rightarrow \infty$: 夫
- Identification of hadron state of interest - $g_{A},\langle x\rangle$ and nucleon σ-terms
- Simulation at physical quark masses - now feasible: \star
- Inclusion of quark loop contributions - now feasible

Recent achievements

Simulation with physical quark masses

A number of collaborations are producing simulations with physical values of the quark mass
ETM Collaboration:

$L \sim 3 \mathrm{fm}$ and $a \sim 0.1 \mathrm{fm} ; r_{0} \sim 0.5 \mathrm{fm}$

Hadron masses

First goal: reproduce the low-lying masses
Use Euclidean correlation functions

$$
\begin{aligned}
G\left(\vec{q}, t_{s}\right) & =\sum_{\vec{x}_{S}} e^{-i \vec{x}_{s} \cdot \vec{a}}\left\langle J\left(\vec{x}_{s}, t_{s}\right) J^{\dagger}(0)\right\rangle \\
& =\sum_{n=0, \cdots, \infty} A_{n} e^{-E_{n}(\vec{q}) t_{s}} \xrightarrow{t_{s} \rightarrow \infty} A_{0} e^{-E_{0}(\vec{q}) t_{s}}
\end{aligned}
$$

need D^{-1} per flavor

- $\left.m_{\text {eff }}\left(\vec{q}=0, t_{s}\right) \equiv-\frac{\partial}{\partial t_{s}} \ln \left[G\left(\overrightarrow{0}, t_{s}\right)\right)\right]$

$$
=m+\text { excited states }
$$

$$
\xrightarrow{t_{s} \rightarrow \infty} m
$$

Large Euclidean time evolution gives ground state
Special techniques to extract excited states

- Noise to signal increases with
$t_{s}: \sim e^{\left(m_{h}-\frac{3}{2} m_{\pi}\right) t_{s}}$

Hadron spectrum

$$
N_{f}=2+1 \text { Clover, BMW, Science } 322(2008)
$$

Milestone calculation for lattice QCD \rightarrow agreement with experiment is a success for QCD \& LQCD

Hadron spectrum

Several collaborations producing the hadron spectrum

Milestone calculation for lattice QCD \rightarrow agreement with experiment is a success for QCD \& LQCD

Isospin and electromagnetic mass splitting

RBC and BMW collaborations: Treat isospin and electromagnetic effects to LO

Baryon spectrum with mass splitting from BMW

- Nucleon mass: isospin and electromagnetic effects with opposite signs
- Physical splitting reproduced

Charmed baryons

SU(4) representations:

Results by ETMC using simulations with physical pion mass

ρ-meson width

- Consider $\pi^{+} \pi^{-}$in the $I=1$-channel
- Estimate P-wave scattering phase shift $\delta_{11}(k)$ using finite size methods
- Use Lüscher's relation between energy in a finite box and the phase in infinite volume
- Use Center of Mass frame and Moving frame
- Use effective range formula: $\tan \delta_{11}(k)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k^{3}}{E\left(m_{R}^{2}-E^{2}\right)}, k=\sqrt{E^{2} / 4-m_{\pi}^{2}} \rightarrow$ determine m_{R} and $g_{\rho \pi \pi}$ and then extract $\Gamma_{\rho}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k_{R}^{3}}{m_{R}^{2}}, k_{R}=\sqrt{m_{R}^{2} / 4-m_{\pi}^{2}}$

$$
m_{\pi}=309 \mathrm{MeV}, L=2.8 \mathrm{fm}
$$

$N_{F}=2$ twisted mass fermions, Xu Feng, K. Jansen and
D. Renner, Phys. Rev. D83 (2011) 094505

ρ-meson width

- Consider $\pi^{+} \pi^{-}$in the $I=1$-channel
- Estimate P -wave scattering phase shift $\delta_{11}(k)$ using finite size methods
- Use Lüscher's relation between energy in a finite box and the phase in infinite volume
- Use Center of Mass frame and Moving frame
- Use effective range formula: $\tan \delta_{11}(k)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k^{3}}{E\left(m_{R}^{2}-E^{2}\right)}, k=\sqrt{E^{2} / 4-m_{\pi}^{2}} \rightarrow$ determine m_{R} and $g_{\rho \pi \pi}$ and then extract $\Gamma_{\rho}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k_{B}^{3}}{m_{R}^{2}}, k_{R}=\sqrt{m_{R}^{2} / 4-m_{\pi}^{2}}$

$$
m_{\pi}=309 \mathrm{MeV}, L=2.8 \mathrm{fm}
$$

$N_{F}=2$ twisted mass fermions, xu Feng, K. Jansen and
D. Renner, Phys. Rev. D83 (2011) 094505

Impressive results using $N_{t}=2+1$ clover fermions and 3 asymmetric lattices, J. J. Dudek, R. G. Edwards and C.E. Thomas, Phys. Rev. D 87 (2013) 034505

Challenges

Challenges: I. Excited states, multi-quark states \& exotics

Variational approach: Enlarge basis of interpolating fields \rightarrow correlation matrix
$G_{j k}\left(\vec{q}, t_{s}\right)=\sum_{\vec{x}_{s}} e^{-i \vec{x}_{s} \cdot \vec{a}}\left\langle J_{j}\left(\vec{x}_{s}, t_{s}\right) J_{k}^{\dagger}(0)\right\rangle, j, k=1, \ldots N$
Solve the generalized eigenvalue problem (GEVP)
$G(t) v_{n}\left(t ; t_{0}\right)=\lambda_{n}\left(t ; t_{0}\right) G\left(t_{0}\right) v_{n}\left(t ; t_{0}\right) \rightarrow \lambda_{n}\left(t ; t_{0}\right)=e^{-E_{n}\left(t-t_{0}\right)}$ yields N lowest eigenstates, M . Lüscher \& U. Wolff (1990)

Large effort to construct the appropriate basis using lattice symmetries, Hadron Spectrum Collaboration

- must extract all states lying below the state of interest
- as $m_{\pi} \rightarrow m_{\text {physical }}$ need to consider multi-hadron states
- must include disconnected diagrams
- most excited states are unstable (resonances)

Where is the Roper?

First goal to obtain the known low-lying nucleon resonances

R.G. Edwards, J. J. Dudek, D. G. Richards, S. J. Wallace. Phys. Rev. D 84 (2011) 074508

- M. Mahbub et al., Phys. Lett. B679 (2009) 418
- G. P. Engel, C. Lang, D. Mohler, A. Schäfer, 1301.4318

Where is the Roper?

First goal to obtain the known low-lying nucleon resonances

$N_{f}=2$ Clover fermions, $m_{\pi}=156 \mathrm{MeV}$ - configurations provided by QCDSF

- R.G. Edwards, J. J. Dudek, D. G. Richards, S. J. Wallace. Phys. Rev. D 84 (2011) 074508
- NA Nathbuith at ol Dhive I att Be70 (onnol 118
- $N_{f}=2$ Twisted mass and clover, C.A., T. Korzec, G. Koutsou, T. Leontiou, arXiv:1302.4410

Where is the Roper?

First goal to obtain the known low-lying nucleon resonances

Positive parity

Negative parity

- R.G. Edwards, J. J. Dudek, D. G. Richards, S. J. Wallace. Phys. Rev. D 84 (2011) 074508
- M Mathituh at at Dhuc Lett RE70 (2ninal 118
- $N_{f}=2$ Twisted mass and clover, C.A., T. Korzec, G. Koutsou, T. Leontiou, arXiv:1302.4410

Challenges: II. Nucleon structure

Parton distribution functions - not directly accessible in lattice QCD calculations Compute moments: $\left\langle x^{n}\right\rangle=\int d x x^{n} q(x) \rightarrow$ related to local operators:

- vector operator

$$
\mathcal{O}_{V^{a}}^{\mu_{1} \cdots \mu_{n}}=\bar{\psi}(x) \gamma^{\left\{\mu_{1}\right.} i \stackrel{\leftrightarrow}{D}{ }^{\mu_{2}} \ldots i \stackrel{\leftrightarrow}{D}^{\left.\mu_{n}\right\}} \frac{\tau^{a}}{2} \psi(x)
$$

- axial-vector operator

$$
\mathcal{O}_{A^{a}}^{\mu_{1} \cdots \mu_{n}}=\bar{\psi}(x) \gamma^{\left\{\mu_{1}\right.} i \stackrel{\leftrightarrow}{D} \mu_{2} \ldots i \stackrel{\leftrightarrow}{D}^{\left.\mu_{n}\right\}} \gamma_{5} \frac{\tau^{a}}{2} \psi(x)
$$

- tensor operator

$$
\mathcal{O}_{T^{a}}^{\mu_{1} \cdots \mu_{n}}=\bar{\psi}(x) \sigma^{\left\{\mu_{1}, \mu_{2}\right.} i \overleftrightarrow{D}^{\mu_{3}} \ldots i \overleftrightarrow{D}^{\left.\mu_{n}\right\}} \frac{\tau^{a}}{2} \psi(x)
$$

Special cases:

- no-derivative \rightarrow nucleon form factors
- one-derivative \rightarrow first moments e.g. average momentum fraction $\langle x\rangle$ Generalized form factor decomposition:
$\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{v^{3}}^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[A_{20}\left(q^{2}\right) \gamma^{\{\mu} P^{\nu\}}+B_{20}\left(q^{2}\right) \frac{i \sigma^{\{\mu \alpha} q_{\alpha} P^{\nu\}}}{2 m}+C_{20}\left(q^{2}\right) \frac{q^{\{\mu} q^{\nu\}}}{m}\right] \frac{1}{2} u_{N}(p, s)$
Nucleon spin $J^{q}=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]$

Nucleon matrix elements

Evaluation of three-point functions:
$G^{\mu \nu}\left(\Gamma, \vec{q}, t_{s}, t_{\text {ins }}\right)=\sum_{\vec{x}_{s}, \vec{x}_{\text {ins }}} e^{i \vec{x}_{\text {ins }} \cdot \vec{q}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{s}, t_{s}\right) \mathcal{O}^{\mu \nu}\left(\vec{x}_{\text {ins }}, t_{\text {ins }}\right) \bar{J}_{\beta}\left(\vec{x}_{0}, t_{0}\right)\right\rangle$

Form ratio by dividing the three-point correlator by an appropriate combination of two-point functions:

$$
\left.R\left(t_{s}, t_{\text {ins }}, t_{0}\right) \xrightarrow{\left(t_{\text {ins }}-t_{0}\right) \Delta \gg 1}\left(t_{s}-t_{\text {ins }}\right) \Delta \gg 1\right) \mathcal{M}\left[1+\ldots e^{-\Delta(\mathbf{p})\left(t_{\text {ins }}-t_{0}\right)}+\ldots e^{-\Delta\left(\mathbf{p}^{\prime}\right)\left(t_{s}-t_{\text {ins }}\right)}\right]
$$

- \mathcal{M} the desired matrix element
- $t_{s}, t_{\text {ins }}, t_{0}$ the sink, insertion and source time-slices
- $\Delta(\mathbf{p})$ the energy gap with the first excited state

Nucleon matrix elements

Evaluation of three-point functions:
$G^{\mu \nu}\left(\Gamma, \vec{q}, t_{s}, t_{\text {ins }}\right)=\sum_{\overrightarrow{x_{s}},}, \vec{x}_{\text {ins }} e^{i \bar{x}_{\text {ins }} \cdot \vec{a}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{s}, t_{s}\right) \mathcal{O}^{\mu \nu}\left(\vec{x}_{\text {ins }}, t_{\text {ins }}\right) J_{\beta}\left(\vec{x}_{0}, t_{0}\right)\right\rangle$

Form ratio by dividing the three-point correlator by an appropriate combination of two-point functions:

$$
R\left(t_{s}, t_{\text {ins }}, t_{0}\right) \xrightarrow[\left(t_{\text {ins }}-t_{0}\right) \Delta \gg 1]{\left(t_{s}-t_{\text {ins }}\right) \Delta \gg 1} \mathcal{M}\left[1+\ldots e^{-\Delta(\mathfrak{p})\left(t_{\text {ins }}-t_{0}\right)}+\ldots e^{-\Delta\left(\mathfrak{p}^{\prime}\right)\left(t_{s}-t_{\text {ins }}\right)}\right]
$$

- \mathcal{M} the desired matrix element
- $t_{s}, t_{\text {ins }}, t_{0}$ the sink, insertion and source time-slices
- $\Delta(\mathbf{p})$ the energy gap with the first excited state

Summing over $t_{\text {ins }}$:

$$
\sum_{t_{\mathrm{ins}}=t_{0}}^{t_{s}} R\left(t_{s}, t_{\mathrm{ins}}, t_{0}\right)=\text { Const. }+\mathcal{M}\left[\left(t_{s}-t_{0}\right)+\mathcal{O}\left(e^{-\Delta(\mathbf{p})\left(t_{s}-t_{0}\right)}\right)+\mathcal{O}\left(e^{-\Delta\left(\mathbf{p}^{\prime}\right)\left(t_{s}-t_{0}\right)}\right)\right]
$$

So the excited state contributions are suppressed by exponentials decaying with $t_{s}-t_{0}$, rather than $t_{s}-t_{\text {ins }}$ and/or $t_{\text {ins }}-t_{0}$.
However, one needs to fit the slope rather than to a constant

Connect lattice results to measurements:
$\mathcal{O}_{\overline{\mathrm{MS}}}(\mu)=Z(\mu, a) \mathcal{O}_{\text {latt }}(a)$
\Longrightarrow evaluate $Z(\mu, a)$ non-perturbatively

Axial charge g_{A}

Axial-vector FFs: $A_{\mu}^{3}=\left.\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{3}}{2} \psi(x) \Longrightarrow \frac{1}{2} \bar{u}_{N}\left(\overrightarrow{p^{\prime}}\right)\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] u_{N}(\vec{p})\right|_{q^{2}=0}$
\rightarrow yields $G_{A}(0) \equiv g_{A}$: i) well known experimentally, \& ii) no quark loop contributions
$N_{f}=2+1+1$ twisted mass, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}, 1200$ statistics

- No detectable excited states contamination
- Consistent results between summation and plateau methods

Axial charge g_{A}

Axial-vector FFs: $A_{\mu}^{3}=\left.\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{3}}{2} \psi(x) \Longrightarrow \frac{1}{2} \bar{u}_{N}\left(\overrightarrow{p^{\prime}}\right)\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] u_{N}(\vec{p})\right|_{q^{2}=0}$
\rightarrow yields $G_{A}(0) \equiv g_{A}$: i) well known experimentally, \& ii) no quark loop contributions

Results from ETMC, c.A., M. Constantinou, S. Dinter, V. Drach, K.
Jansen, C. Kallidonis, G. Koutsou, arXiv:1303.5979

- Results at physical pion mass are now becoming available \rightarrow need a dedicated study with high statistics, a larger volume and 3 lattice spacings

Axial charge g_{A}

Axial-vector FFs: $A_{\mu}^{3}=\left.\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{3}}{2} \psi(x) \Longrightarrow \frac{1}{2} \bar{u}_{N}\left(\overrightarrow{p^{\prime}}\right)\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] u_{N}(\vec{p})\right|_{q^{2}=0}$
\rightarrow yields $G_{A}(0) \equiv g_{A}$: i) well known experimentally, \& ii) no quark loop contributions

Results from ETMC, C.A., M. Constantinou, S. Dinter, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, arXiv:1303.5979

Comparison with other groups using similar methods

- Results at physical pion mass are now becoming available \rightarrow need a dedicated study with high statistics, a larger volume and 3 lattice spacings
- A number of collaborations are engaging in systematic studies, e.g.
- $N_{f}=2+1$ Clover, J. R. Green et al., arXiv:1209.1687
- $N_{f}=2$ Clover, R.Hosley et al., arXiv:1302.2233
- $N_{f}=2$ Clover, S. Capitani et al. arXiv:1205.0180
- $N_{f}=2+1$ Clover, B. J. Owen et al., arXiv:1212.4668
- $N_{f}=2+1+1$ Mixed action (HISQ/Clover), T. Bhattacharya et al., arXiv:1306.5435

Momentum fraction and the nucleon spin

What is the distribution of the nucleon momentum among the nucleon constituents?
\rightarrow needs knowledge of the parton distribution functions (PDFs)
One measures moments of parton distributions, in DIS:

$$
\langle x\rangle_{q}=\int_{0}^{1} d x x[q(x)+\bar{q}(x)], \quad\langle x\rangle_{\Delta q}=\int_{0}^{1} d x x[\Delta q(x)-\Delta \bar{q}(x)]
$$

Unpolarized quark distribution

$$
q(x)=q(x)_{\downarrow}+q(x)_{\uparrow}
$$

Polarized quark distribution

$$
\Delta q(x)=q(x)_{\downarrow}-q(x)_{\uparrow}
$$

Extracted from nucleon matrix elements of $\left.\mathcal{O}_{q}^{\mu_{1} \mu_{2}}=\bar{\psi} \gamma^{\left\{\mu_{1} i\right.} \stackrel{\leftrightarrow}{D} \mu_{2}\right\}$ Results in the $\overline{M S}$ scheme at $\mu=2 \mathrm{GeV}$.

Results from ETMC

Comparison with other collaborations

Experimental values:

- $\langle x\rangle_{u-d}$ from S. Alekhin et al. arXiv:1202.2281

Momentum fraction and the nucleon spin

What is the distribution of the nucleon momentum among the nucleon constituents?
\rightarrow needs knowledge of the parton distribution functions (PDFs)
One measures moments of parton distributions, in DIS:

$$
\langle x\rangle_{q}=\int_{0}^{1} d x x[q(x)+\bar{q}(x)], \quad\langle x\rangle_{\Delta q}=\int_{0}^{1} d x x[\Delta q(x)-\Delta \bar{q}(x)]
$$

Unpolarized quark distribution

$$
q(x)=q(x)_{\downarrow}+q(x)_{\uparrow}
$$

Polarized quark distribution

$$
\Delta q(x)=q(x)_{\downarrow}-q(x)_{\uparrow}
$$

Extracted from nucleon matrix elements of $\mathcal{O}_{q}^{\mu_{1} \mu_{2}}=\bar{\psi} \gamma^{\left\{\mu_{1} i\right.} \stackrel{\leftrightarrow}{D}{ }^{\left.\mu_{2}\right\}} \psi$ and $\mathcal{O}_{\Delta q}^{\mu_{1} \mu_{2}}=\bar{\psi} \gamma^{\left\{\mu_{1}\right.} \gamma_{5} i \stackrel{\leftrightarrow}{D}{ }^{\left.\mu_{2}\right\}} \psi$ Results in the $\overline{M S}$ scheme at $\mu=2 \mathrm{GeV}$.

Results from ETMC

Comparison with other collaborations

Experimental values:

- $\langle x\rangle_{\Delta u-\Delta d}$ from Blumlein et al. arXiv:1005.3113

Where is the nucleon spin?

Spin sum: $\frac{1}{2}=\sum_{q} \underbrace{\left(\frac{1}{2} \Delta \Sigma^{q}+L^{q}\right)}_{J^{q}}+J^{G}$
$J^{q}=A_{20}^{q}(0)+B_{20}^{q}(0)$ and $\Delta \Sigma^{q}=g_{A}^{q}$
Connected contributions

\Longrightarrow Total spin for u-quarks $J^{u}<0.25$ and for d-quark $J^{d} \sim 0$

- $L^{u+d} \sim 0$ at physical point
- $\Delta \Sigma^{u+d}$ in agreement with experimental value at physical point
- The total spin $J^{u+d} \sim 0.25 \Longrightarrow$ Where is the other half?

However, more statistics and checks of systematics are needed for final results at the physical point

Where is the nucleon spin?

Spin sum: $\frac{1}{2}=\sum_{q} \underbrace{\left(\frac{1}{2} \Delta \Sigma^{q}+L^{q}\right)}_{J^{q}}+J^{G}$
$J^{q}=A_{20}^{q}(0)+B_{20}^{q}(0)$ and $\Delta \Sigma^{q}=g_{A}^{q}$
Connected contributions

- $\Delta \Sigma^{u, d}$ consistent with experimental values
- $L^{d} \sim-L^{u}$

However, more statistics and checks of systematics are needed for final results at the physical point

Challenges: III. Disconnected quark loop contributions

Notoriously difficult

- $L\left(x_{\text {ins }}\right)=\operatorname{Tr}\left[\Gamma G\left(x_{\text {ins }} ; x_{\text {ins }}\right)\right] \rightarrow$ need quark propagators from all $\vec{x}_{\text {ins }}$ or L^{3} more expensive as compared to the calculation of hadron masses
- Large gauge noise \rightarrow large statistics

- Use special techniques that utilize stochastic noise on all spatial lattice sites $\rightarrow N_{r}$ more expensive that hadron masses with $N_{r} \ll L^{3}$
- Reduce noise by increasing statistics \Longrightarrow take advantage of graphics cards (GPUs) \rightarrow need to develop special multi-GPU codes

Challenges: III. Disconnected quark loop contributions

Notoriously difficult

- L($\left.x_{\text {ins }}\right)=\operatorname{Tr}\left[\Gamma G\left(x_{\text {ins }} ; x_{\text {ins }}\right)\right] \rightarrow$ need quark propagators from all $\vec{x}_{\text {ins }}$ or L^{3} more expensive as compared to the calculation of hadron masses
- Large gauge noise \rightarrow large statistics

- Use special techniques that utilize stochastic noise on all spatial lattice sites $\rightarrow N_{r}$ more expensive that hadron masses with $N_{r} \ll L^{3}$
- Reduce noise by increasing statistics \Longrightarrow take advantage of graphics cards (GPUs) \rightarrow need to develop special multi-GPU codes

A Fermi card

Cluster of 8 nodes of Fermi GPUs at the Cyprus Institute

Axial charge g_{A}

To compute $\Delta \Sigma^{q}$ we need also the isoscalar g_{A}^{u+d}

Dedicated high statistics study

Choose one ensemble to perform a high statistics analysis for all disconnected contributions to nucleon observables
$N_{f}=2+1+1$ twisted mass, $a=0.082 \mathrm{fm}, m_{\pi}=373 \mathrm{MeV}, \sim \mathbf{1 5 0}, 000$ statistics (on 4700 confs)

Disconnected isoscalar, agrees with Bali et al. (QCDSF),
Phys.Rev.Lett. 108 (2012) 222001

Strange quark loop

Where is the nucleon spin?

For one ensemble at $m_{\pi}=373 \mathrm{MeV}$ we have the disconnected contribution \rightarrow we can check the effect on the observables, $\mathcal{O}(200,000)$ statistics

- Disconnected quark loop contributions non-zero for $\Delta \Sigma^{u, d, s}$
- Consistent with zero for $J^{u, d}$
- The total spin $J^{u+d} \sim 0.25 \Longrightarrow$ Where is the other half?
- Contributions from J^{G} ? \rightarrow on-going efforts to compute them, K.-F. Liu et al. (χ QCD), arXiv:1203.6388

Where is the nucleon spin?

$$
\begin{aligned}
& \text { Spin sum: } \frac{1}{2}=\sum_{q} \underbrace{\left(\frac{1}{2} \Delta \Sigma^{q}+L^{q}\right)}_{J q}+J^{G} \\
& J^{q}=A_{20}^{q}(0)+B_{20}^{q}(0) \text { and } \Delta \Sigma^{q}=g_{A}^{q}
\end{aligned}
$$

For one ensemble at $m_{\pi}=373 \mathrm{MeV}$ we have the disconnected contribution \rightarrow we can check the effect on the observables, $\mathcal{O}(200,000)$ statistics

- Disconnected quark loop contributions non-zero for $\Delta \Sigma^{u, d, s}$
- Consistent with zero for $\mathrm{J}^{u, d}$
- The total spin $J^{u+d} \sim 0.25 \Longrightarrow$ Where is the other half?
- Contributions from J^{G} ? \rightarrow on-going efforts to compute them, K.F. Liu etal. ((QCD), arxiv:1203.6388

The quark content of the nucleon

- $\sigma_{\pi N} \equiv m_{l}\langle N| \bar{u} u+\bar{d} d|N\rangle$: measures the explicit breaking of chiral symmetry Extracted from analysis of low-energy pion-proton scattering data Largest uncertainty in interpreting experiments for dark matter searches - Higgs-nucleon coupling depends on σ-terms, J. Ellis, K. Olive, C. Savage, arXiv:0801.3656
- In lattice QCD it can be obtained via the Feynman-Hellman theorem: $\sigma_{\pi N}=m_{l} \frac{\partial m_{N}}{\partial m_{l}}$
- Similarly $\sigma_{s} \equiv m_{s}\langle N| \bar{s} s|N\rangle>=m_{s} \frac{\partial m_{N}}{\partial m_{s}}$
- The strange quark content of the nucleon: $y_{N}=\frac{2\langle N| \bar{s} s|N\rangle}{\langle N| \bar{u} u+\bar{d} d|N\rangle}=1-\frac{\sigma_{0}}{\sigma_{\pi N}}$, where $\sigma_{0}=m_{l}\langle N| \bar{u} u+\bar{d} d-2 \bar{s} s|N\rangle$
- A number of groups have used the spectral method to extract the σ-terms, R. Young, Latice 2012 But they can be also calculated directly

The quark content of the nucleon

- $\sigma_{\pi N} \equiv m_{\iota}\langle N| \bar{u} u+\bar{d} d|N\rangle$:
- In lattice QCD it can be obtained via the Feynman-Hellman theorem: $\sigma_{\pi N}=m_{l} \frac{\partial m_{N}}{\partial m_{l}}$
- Similarly $\sigma_{s} \equiv m_{s}\langle N| \bar{s} s|N\rangle>=m_{s} \frac{\partial m_{N}}{\partial m_{s}}$
- The strange quark content of the nucleon: $y_{N}=\frac{2\langle N| \bar{s} s|N\rangle}{\langle N| \bar{u} u+d d|N\rangle}=1-\frac{\sigma_{0}}{\sigma_{\pi N}}$, where $\sigma_{0}=m_{l}\langle N| \bar{u} u+\bar{d} d-2 \bar{s} s|N\rangle$
- A number of groups have used the spectral method to extract the σ-terms, R. Young, Latice 2012 But they can be also calculated directly

$m_{\pi}=373 \mathrm{MeV}, \mathbf{1 5 0 , 0 0 0}$ measurements

The quark content of the nucleon

- $\quad \sigma_{\pi N} \equiv m_{\iota}\langle N| \bar{u} u+\bar{d} d|N\rangle$:
- In lattice QCD it can be obtained via the Feynman-Hellman theorem: $\sigma_{\pi N}=m_{l} \frac{\partial m_{N}}{\partial m_{l}}$
- Similarly $\sigma_{s} \equiv m_{s}\langle N| \bar{s} s|N\rangle>=m_{s} \frac{\partial m_{N}}{\partial m_{s}}$
- The strange quark content of the nucleon: $y_{N}=\frac{2\langle N| \bar{s} s|N\rangle}{\langle N| \bar{u} u+\bar{d} d|N\rangle}=1-\frac{\sigma_{0}}{\sigma_{\pi N}}$, where $\sigma_{0}=m_{l}\langle N| \bar{u} u+\bar{d} d-2 \bar{s} s|N\rangle$
- A number of groups have used the spectral method to extract the σ-terms, R. Young, Latice 2012 But they can be also calculated directly

```
\(m_{\pi}=373 \mathrm{MeV}, \mathbf{1 5 0 , 0 0 0}\) measurements
```


Challenges: IV. Decay width of baryons

Use the transition amplitude method, C. McNeile, C. Michael, P. Pennanen, PRD 65094505 (2002) Test the method for the Δ

\Longrightarrow compute transition amplitude $x=\langle\Delta \mid N \pi\rangle$ from the correlator $G^{\Delta \rightarrow N \pi}$

- Need $E_{\Delta} \sim E_{\pi}+E_{N}$
- Applicable for $x t \ll 1$

Hybrid calculation at $m_{\pi} \sim 360 \mathrm{MeV}$ with $L=3.6 \mathrm{fm}$

Challenges: V. Axial charge for hyperons \& Charmed baryons

- Hyperon axial charges: $g_{\wedge \Sigma} \sim 0.60, g_{\Sigma \Sigma}, g_{\equiv \equiv}$ not known experimentally
- Calculation equivalent to $g_{A}:\left.\langle h| \bar{\psi} \gamma_{\mu} \gamma_{5} \psi|h\rangle\right|_{q^{2}=0}$ - Efficient to calculate with fixed current method

If exact $\mathrm{SU}(3)$ flavor symmetry:

Probe deviation: $\delta_{\mathrm{SU}(3)}=g_{A}^{N}-g_{A}^{\Sigma}+g_{\bar{A}}^{\overline{\bar{A}}}$ versus $x=\left(m_{K}^{2}-m_{\pi}^{2}\right) / 4 \pi^{2} f_{\pi}^{2}$, H.- W. Lin and K. Orginos, PRD 79, 034507 (2009)

Breaking $\sim x^{2}$ leads to about 15% at the physical point $x_{\text {phy }}=0.33$

Challenges: V. Axial charge for hyperons \& Charmed baryons

- Hyperon axial charges: $g_{\wedge \Sigma} \sim 0.60, g_{\Sigma \Sigma}, g_{\equiv \equiv}$ not known experimentally
- Calculation equivalent to $g_{A}:\left.\langle h| \bar{\psi} \gamma_{\mu} \gamma_{5} \psi|h\rangle\right|_{q^{2}=0}$ - Efficient to calculate with fixed current method

If exact $\mathrm{SU}(3)$ flavor symmetry:

Breaking $\sim x^{2}$ leads to about 15\% at the physical point $x_{\text {phy }}=0.33$

σ-terms for hyperons and charmed baryons

Need both connected and disconnected pieces
First results using $N_{F}=2+1+1 \mathrm{TMF}$ at $m_{\pi}=373 \mathrm{MeV}$

Conclusions

- Nucleon structure is a benchmark for the Lattice QCD approach Investigation of $g_{A},\langle x\rangle_{u-d}$ etc is now feasible at physical pion mass and larger volumes \rightarrow need high statistics and careful cross-checks
- Evaluation of disconnected quark loop diagrams has become feasible addressing an up to now unknown systematic error
- Predictions for other hadron observables are beginning to emerge e.g. masses and axial charges of hyperons and charmed baryons
- The study of excited states and resonances is under way \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics
- Many challenges ahead ...

Conclusions

- Nucleon structure is a benchmark for the Lattice QCD approach Investigation of $g_{A},\langle x\rangle_{u-d}$ etc is now feasible at physical pion mass and larger volumes \rightarrow need high statistics and careful cross-checks
- Evaluation of disconnected quark loop diagrams has become feasible addressing an up to now unknown systematic error
- Predictions for other hadron observables are beginning to emerge e.g. masses and axial charges of hyperons and charmed baryons
- The study of excited states and resonances is under way \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics
- Many challenges ahead ...

As simulations at the physical pion mass and more computer resources are becoming available we expect many physical results on key hadron observables that will impact both experiments and phenomenology

Acknowledgments

European Twisted Mass Collaboration (ETMC)

Cyprus (Univ. of Cyprus, Cyprus Inst.), France (Orsay, Grenoble), Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg, Münster), Italy (Rome I, II, III, Trento), Netherlands (Groningen), Poland (Poznan), Spain (Valencia), Switzerland (Bern), UK (Liverpool)

Collaborators:
A. Abdel-Rehim, M. Constantinou, V. Drach, K. Hadjiyiannakou, K.Jansen

Ch. Kallidonis, G. Koutsou, A. Strelchenko, A. Vaquero

The Project Cy-Tera (NEA YПO $\triangle \mathrm{OMH} / \Sigma \mathrm{TPATH} / 0308 / 31$) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation

