Recent result of LEPS and prospects of LEPS2

M. Miyabe
Tohoku University
LEPS collaboration

as substitute of Dr. Niiyama
Overview of LEPS

LEPS 2001~

LEPS2 2013~
Physics at SPring-8/LEPS

- φ-meson production
 - Reaction mechanism, φ-nucleon interaction [T. Sawada]
- Evidence for a κ meson [S.H. Hwang]
 - Reaction mechanism
- Backward meson production
 - Baryon resonance study
- Exotic baryons
 - Λ(1405) Photoproduction up to 3 GeV [Y. Nakatsugawa]
 - Θ+ Photoproduction
 - Search for KNN Bound State [A. Tokiyasu]
SPring-8 LEPS

LEPS backward compton scattering photon
- $E_\gamma \sim 2.4\text{GeV}, E_\gamma \sim 2.9\text{GeV}$ Tagged photon
- Polarization $\sim 95\%$
- $> 1\text{ Mcps}$

Physics run from 2001
Photo production experiment using charged particle spectrometer.
Pion, kaon, proton at forward angle.
K*0Σ+ photoproduction

- **t-channel exchange is dominant**
- **K-exchange is prohibit in K photoproduction**
- **Exchanged particle information from Decay asymmetry analysis**

Only K-exchange (natural parity exchange) or K-exchange (unnatural parity exchange) is allowed.
Parity spin asymmetry:

$$P_\sigma = 2 \rho^{1}_{1-1} - \rho^{1}_{00}$$

[Similar to photon beam asymmetry.]

- GJ frame: 0.784 \pm 0.154
- Helicity frame: 0.758 \pm 0.123

Dominance of natural-parity exchange is indicated at forward angles.

Consistent with $\kappa(800)$ meson exchange.
Λ(1405) production

Study for internal structure of Λ(1405)

- qqq, NK, qqqqq
- Spectrum shape
- Production mechanism
- Photon beam symmetry
- Large acceptance detector
- TPC

Previous result of LEPS (2008)
CH2 target

2012/10/18 CJJNPS2012
New result of \(\Lambda(1405) \) production

3 times higher statistic with LH2 target

\[
\Sigma^+ \pi^- \text{ mode}
\]

\[
\Sigma^- \pi^+ \text{ mode}
\]

Spectrum shape is difference in each charge mode

very preliminary

counts/0.01GeV/c^2

MM(K^+)GeV/c^2
Search for the $K^- \, pp$ bound state

- **Theoretical prediction**: $B.E. = 10 - 80 \, \text{MeV}$, $\Gamma = 30 - 110 \, \text{MeV}$
- Phys. Lett. B712, 132 etc…

- **$d(\gamma, K^+ \pi^+) K^- pp$**
- **Unique feature of γ beam**
 - direct coupling to K, K^*
 - \rightarrow virtual K, K^* beam
 - $J=1$ (spin flip)
Search for the K⁻ pp bound state

No peak structure was observed

Upper Limit
(0.17–0.55), (0.55–1.7) (1.1–2.9) μb at 95% CL for Γ = 20, 60 , 100 MeV
\[T = \frac{R_{Cu}^\phi / A_{Cu}}{R_C^\phi / A_C} \]

Here, the production rate of \(\phi \) mesons

\[R_A^\phi = \frac{N_A^\phi}{N_A^{beam} N_A^{nuclei} \eta_A^{att} \eta_A^{geo} BR} \]

\[\sigma_{\phi N} = \alpha (\text{const.}) \]

\[\sigma_{\phi N} = \alpha \cdot p_\phi \]

\[\sigma_{\phi N} = \alpha \cdot p_\phi^2 \]

\(\chi^2 / \text{ndf} = 6.95 / 3 \)
(\(\chi^2 \) prob. = 7\%)

\(\chi^2 / \text{ndf} = 2.77 / 3 \)
(\(\chi^2 \) prob. = 43\%)

\(\chi^2 / \text{ndf} = 1.32 / 3 \)
(\(\chi^2 \) prob. = 72\%)

More Appropriate
Result of the Θ^+ from LEPS

- Data from 2002-03
 - Significance 5.1\(\sigma\)
 - Shape analysis
 - $M(\Theta) =$1524 MeV

- To clarify the existence of Θ^+
 - Higher statistic
 - Blind analysis
 - \rightarrow
 - 2006-07, 2.6 times higher statistic experiment
New Result of Θ^+ (blind analysis)

Same cut condition (2002-03) and better calibration in blind analysis

No strong narrow peak structure is not observed. To understand the discrepancy between two result...

-> Exclusive analysis (proton/neutron identification)
Proton detection by using dE/dx in Start Counter

Proton not tagged (Proton rejected)

KKn and part of KKp

Proton tagged (ε ~60%)

KKp only

Signal enhancement is seen in proton rejected events.

→ should be associated with γn reaction.

p/n ratio:
1.6 before proton rejection
0.6 after proton rejection
M(NK\(^{+}\)) for exclusive samples for each data

- Peak is seen in tagged events for the previous data while not seen in the new data.
- An enhancement is seen in proton rejected events in the both data.
Z-Vertex cut

Proton rejection efficiency becomes large by selecting downstream

Enhance the Neutron event

Clearly observed enhancement $M(nK^+)\ (GeV/c^2)\ $
MC based exclusive analysis

- Important to estimate the proton contribution
- The estimated proton contributions are subtracted from full data sample (without z-vertex and proton tagging cut) using MC.

Unbinned fit for $M(pK^-)$ with MC simulation

$M(pK^-)$

\[
\chi^2/\text{ndf} = \frac{34.4}{37}
\]

$M(pK^+)$

\[
\chi^2/\text{ndf} = \frac{33.3}{37}
\]

ϕ and non-resonant KK, $\Lambda(1520)$, $\Lambda(1405)$
An enhancement is seen both in the exclusive analysis.
Mass and significance estimation is underway.
-> New experiment with large SC from this October.
New experiment setup

Start counter (~ 2007)

New Start counter (2012~)
Improvement of proton tagging

Future prospect
LEPS2

BGOEGG EM-calorimeter
(neutral meson detection experiment)

BNL-E949 base detector
Θ+ search, Λ(1405)
Expansion of LEPS experiment
LEPS2 Project at SPring-8

Backward Compton Scattering

Higher intensity:
- Multi (ex. 4) laser injection w/ large aperture beam-line
- & Laser beam shaping
 ~10^7 photons/s (LEPS ~10^6)

High energy: Re-injection of X-ray from undulator
 E_γ < 7.5 GeV (LEPS < 3 GeV)

Better divergence beam
⇒ collimated photon beam
⇒ better tagger resolution
Different focus points for multi CW laser injection

Large acceptance EM calorimeter BGO/EGG.

Large 4π spectrometer based on BNL-E949 detector system.
Physics at LEPS2

- BNL-E949 base detector
 - $\Theta^+, \Lambda(1405)$
 - Expansion of LEPS experiment
- BGOEGG detector
 - η' mesic nulei
 - Baryon resonance study with multi meson production
E949 based spectrometer

Under construction! (2014)
LEPS2 laser system

- simultaneous 4-laser injection

- Increase the laser power
 - $8 \text{ W} \rightarrow 16 \text{ W or 24W}$

- Smaller beam size
 - Lower σ_x: $58 \ \mu\text{m} \rightarrow 14 \ \mu\text{m}$

Multi laser injection system
First beam observation at LEPS3
beam profile is well collimated
consistent with the expectation

Energy spectrum with large BGO crystal (φ 8 cm x L 30cm)
Photon beam intensity ~ 7 MHz (for 0<Eγ<2.4 GeV) @ 3-(355nm) laser
η′(958) and UA(1) anomaly

- The experimental mass of η′ is more than 2 times larger than expected value.
- UA(1) anomaly effect.
- Origin of large η′ mass
- Chiral symmetry breaking
- UA(1) anomaly

Daisuke Jido, Hideko Nagahiro, and Satoru Hiren

No experimental information for UA(1) anomaly effect
Mass modification in finite density

Mass of η' is possibly modified under the finite density compared with the vacuum

- $\Delta m_{\eta'} \sim -150\text{MeV} @\rho_0$
- $\Delta m_\eta \sim +20\text{MeV} @\rho_0$

- H. Nagahiro, M Takizawa, S. Hirenzaki
Measurement of η' in finite density

- Large mass reduction (150 MeV) of the η' meson in the normal nuclear density
- Existence of a bound state with a nucleus (η'-mesic nuclei)
- If we observe the η' bound state, we achieve the information for UA(1) anomaly effect.
η’-mesic nuclei

- Strong attractive force and small absorption
 - Attractive force
 - $U_A(1)$ anomaly effect
 - Absorption
 - $\text{Re}W_0 \sim 7.5-12.5\text{MeV}$ (CB-ELSA)
 - M. Nanova et al., PLB 710, 600 (2012)
- Experimental results
 - $\text{Re} a_{\eta'N} < 0.8\text{fm}$
 - $|a_{\eta'N}| < 0.1\text{fm}$
- Optical potential with Chiral unitary model
 - $\text{Re}V \gg \text{Im}V$ (possible)
 - → more detailed experiment!

Transparency ratio

Search the η’ mesic nuclei using nuclear target.
η’ mesic nuclei in \((\gamma, p)\) reaction

- Lower Recoil momentum of η’ than hadron beam
- Experimental parameters
 - \(E_\gamma\) 1.6~2.9 GeV
 - Target C
- Forward proton detection

Numerical results: \(^{12}\text{C}(\gamma, p)^{11}\text{B}_{\eta',\omega,\eta'}\)

- \(g_D = -12.36/A^5\)
- Quasi-free

\(^{12}\text{C}(\gamma, p)^{11}\text{B}_{\eta',\omega,\eta'}\) missing mass reduction due to the medium effect through anomalous term

Hirenzaki@ELPH 201
LEPS2 BGOEGG project

- Egg shape EM detector
- Total volume 264L
- Total weight 1.9t (crystal)
- 2-type PMT
 - H11334 (Metal package)
 - H6524 (head-on type)
- Very fewInsensitive regeon
- Without housing material
- Only reflector 3M-ESR film (200µm)
- Energy resolution
 - 1.3 % for 1GeV e^+
- Position resolution
 - 3mm
Peripheral detectors

- Time of flight counter
- RPC
- Charge identification detector
- Charged particle tracker chambers
- CDC, DC

![Diagram of LEPS2 experiment hatch with BGO EGG, Charge ID, CDC, E949 Solenoid, and RPC labeled.]
Resistive Plate Chamber (RPC)

- Focus on mesic nuclei search
- 12 MeV forward proton momentum resolution
 - 50 psec time resolution at 12 m flight length

32 modules in wall
Charge identification detector

- Place at inside of BGOEGG
- 30 scintillators with overlap.
- Scintillator size
 - $5 \times 26 \times 413$
 - $50\text{um} \times 50\text{um}$
- Multi Pixel Photon Counter (MPPC) readout
 - Effective area $3\text{mm} \times 3\text{mm}$
 - Pixel size $50\text{um} \times 50\text{um}$
Charged particle tracker chambers

- Charged particle positions/angles at forward angle (θ<24°)
- 6 planes (XX'UU'VV')
- 80 sense wires / plane
- Effective area: φ1280mm
- 16 mm square cell

σ = 130 µm

~1.5m
Yield estimation η' mesic nuclei by η tagging at BGOEGG

- Dominant conversion from η'
 - $\eta' p \rightarrow \eta p$
 - $\eta \rightarrow \gamma\gamma (39.3\%)$
 - $\eta \rightarrow \pi^0\pi^0\pi^0 \rightarrow 6\gamma (33\%)$

Multi meson production background will be suppressed by η tag at BGOEGG!

Expected yield

- $d^2\sigma/dE d\Omega \sim 2\text{nb/sr/MeV}$
- Target \sim Carbon 20mm
- Beam intensity $\sim 2\text{Mcps (Tag. Eff\(\sim 50\%)$}
- Forward proton with RPC(2x4m) $\rightarrow 70000\text{ event / month}$
- With η tag at BGOEGG $\rightarrow 2\sim 3000\text{ event / month}$
 ($\eta'N \rightarrow \eta N : 50\% \text{ from bound state}$)
η’ meson production

Geant4 simulation

- 44.3% η’ → π⁺π⁻η
- 29.5% η’ → ργ
- 20.9% η’ → π⁰π⁰η→6γ
- 2.1% η’ → γγ

@ proton target (40mm)

η’ mass resolution

~2.8%

1,1000 η’ event @ LEPS2 per 1-month
First experiment in 2013
Summary

LEPS project are collaborating toward next generation experiments **LEPS2** at SPring-8 with RIKEN and KEK.

LEPS
- $K^*\Sigma^+$ photoproduction with evidence for κ meson exchange. (PRL108,092001)
- $\Lambda(1520)$ mass spectrum shape shows different in each charge mode.
- KNN bound state search (will be publish soon [PLB, arXiv.1306.5320])
- The Θ^+ is studied via $\gamma d \to K^+K^\pi n$ reaction with high statistics data.
 - 2.6 times higher statistics compared with previous data are collected.
 - The inclusive $M(nK^+)$ spectrum for new data does not show a strong narrow peak.
 - The significance of the peak in new data is $\sim 2\sigma$ by shape analysis.
 - The exclusive analysis

LEPS2
- SPring-8 LEPS2 facility just started
- LEPS2 has one order of magnitude higher intensity beam and large acceptance coverage.
 - BGOEGG, E949 based detectors.
- BGOEGG calorimeter experiments started in this winter.
 - η' mesic nuclei, baryon resonance, etc
- Thanks!

2012/10/18 CJJNPS2012

Thanks!