

A high-precision determination of the weak mixing angle $sin^2(\theta_w)$ at MESA

₽SFB를

Frank Maas

(Johannes Gutenberg University Mainz and Helmholtz-Institute Mainz)

"Hadrons from Quarks and Gluons", International Workshop XLII on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg, Kleinwalsertal, Austria, January 12- 18, 2014

Outline

MESA: energy recovering linear accelerator

Weak Mixing Angle

Experimental Method: A_{PV}

Experimental Setup

Recent developments (past five years)

Helmholtz Institute Mainz:

Structure, Symmetrie and Stability of Matter and Antimatter Close cooperation between Mainz Univsersity and FAIR/GSI Darmstadt

German excellence initiative: Cluster of Excellence "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA)

New Collaborative Research Center at Johannes Gutenberg-University Mainz:

The Low-Energy Frontier of the Standard Model From Quarks and Gluons to Hadrons and Nuclei.

Recent developments (past five years)

MESA-Accelerator

JG

Institut für Kernph

Mainz energy recovering superconducting accelerator

1.3 GHz c.w. beamNormal conducting injector LINACSuperconducting cavities in recirculation beamline

ERL mode (Energy recovering mode):

10 mA, 100 MeV unpolarized beam (pseudo internal gas hydrogen target L~10³⁵ cm⁻²s⁻¹)

EB mode (External beam):

300 μ A, 150 MeV polarized beam (liquid Hydrogen target L~10³⁹ cm⁻²s⁻¹)

Motivation for MESA-Accelerator:

- 1. New accelerator technique (ERL)
- 2. Search for Dark Photon (ERL)
- 3. Measurement of the weak charge of the Proton (EB)

JG U MESA: Beam parameter SFB 1044 Institut für Kernphysik

Beam Energy ERL/EB [MeV]	105/155 (105/205)
Operation mode	1300 MHz, c.w.
Elektron-sources	1.) Polarised : NEA GaAsP/GaAs superlattice , 200keV (?) 2.) unpolarised KCsSb, 200keV
Bunch Charge EB/ERL [pC] 7.7pC= <mark>10mA</mark> @1300MHz	0.15/0.77 (0.15/7.7)
Norm. Emittance EB/ERL [µm]	0.1/<0.5 (0.1/<1)
Spin Polarisation (EB-mode only)	> 0.85
Recirculations	2 (<mark>3</mark>)
Beampower at Exp. ERL/EB [kW]	100/22.5 (1050/30)
R.fPower installed [kW]	140 (180)

JG U MESA: Lattice concept SFB 1044 Institut für Kernphysik

"Double axis" acceleration, CEBAF inspired ^{D.}

D. Simon/K.H. Kaiser

D. 5

MESA-Layout

10 m

Features:

JG|U

- 1.) Minimized intrusion into building
- 2.) Beam transport EB/ERL trough lattice feasible
- 3.) Can be made compatible with four seater cryomodules
- 4.) Energy doubling seems in principle feasible (200MeV ERL/300MeV EB)

", running" $\sin^2 \theta_{eff}$ or $\sin^2 \theta_W(\mu)$

IG U

Institut für Kernphysik

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model

Precision measurements and quantum corrections:

 $\begin{array}{ll} \text{running } \alpha & \text{running } \sin^2 \theta_{\text{W}}(\mu) \\ \text{(P1)} & \text{(P2)} \end{array}$

Universal quantum corrections: can be absorbed into a scale dependent, "running" $\sin^2 \theta_{eff}$ or $\sin^2 \theta_w(\mu)$

Theory

Different prescriptions for the definition of the scale dependence \rightarrow set up full 1-loop corrected expression for the observable A_{ep}

Theory uncertainties: parameter dependence and hadronic input

Jens Erler: PRISMA guest professor (since August 1)

μ **[GeV]**

 $\succ \gamma Z$ box graph contributions obtained by modelling hadronic effects:

- Hadronic uncertainties suppressed at lower energies
- Planned experiment:P2 @ MESA

Dominant theoretical uncertainty:

 γZ box graphs, $\Box \downarrow \gamma Z$

Sensitive to hadronic effects

Sensitivity to new physics beyond the Standard Model

JGU

Institut für Kernphysik

Sensitivity to new physics beyond the Standard Model

Extra Z

Mixing with Dark photon or Dark Z

Contact interaction

New Fermions

Running $\sin^2 \theta_w$ and Dark Parity Violation

JGU

Institut für Kernphysik

Example: supersymmetric Standard Model extensions

Ramsey-Musolf and Su, Phys. Rep. 456 (2008)

Complementary access by weak charges of proton and electron

New physics sensitivity from contact interaction

	precision	$\Delta \sin^2 \overline{\theta}_{W}(0)$	Λ_{new} (expected)
APV Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	I9 %	0.0030	17.0 TeV
Qweak final	4.5 %	0.0008	33 TeV
PVDIS	4.5 %	0.0050	7.6 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV

044

Experimental Method

Parity Violating Asymmetry in elastic electron proton scattering

Measure Flux of Scattered electrons:

- no pile-up (double count losses)
- sensitive to small electr. fields.
- no separation of phys. process

Parity violating cross section asymmetry

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

$$Q_W = 1 - 4\sin^2\theta_W(\mu)$$
hadron structure

$$F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$$

Important input from other projects (S1, S3)

Parity violating cross section asymmetry

JGU

Institut für Kernphysik

Precision in Determination of $\sin^2 \theta_{W}$

PVeS Experiment Summary

SFB Institut für Kernph

Physics Reach

Roger Carlini (co-chair) Frank Maas (co-chair) Richard Milner (co-chair) + many conveners

P2 and "beyond":

- Studied additional backward angle Measurement (G_A, G_M^s): S.Baunack

- Studied additional measurement on Carbon: K. Gerz

Studied different beam energies:D. Becker

- Studied additional measurement in heavier nuclei (lead): C.Sfienti Workshop to Explore Physics Opportunities with Intense, Polarized Electron beams with Energy up to 300 MeV MIT, Cambridge, MA March 14-16, 2013

With the availability of intense, polarized linac beams in the energy range up to 300 MeV, new types of experiments can be considered. The workshop is open to all good ideas but we solicit abstracts in the following categories:

- Parity violating electron scattering at low Q²
- Search for dark photons
- Precision nucleon structure
- Nuclear physics, inc. astrophysical reactions
- Technology: facilities, high power targets, high intensity polarized electron sources, precision electron polarimetry, optimized detectors and high brightness beam diagnostics

Organizing Committee: Kurt Aulenbacher (U. Mainz) Roger Carlini (JLab) (Co-chair) Achim Denig (U. Mainz) Roy Holt (ANL) Peter Fisher (MIT) Krishna Kumar (UMass, Amherst) Frank Maas (U. Mainz) (Co-chair) Bill Marciano (BNL) Richard Milner (MIT) (Co-chair) George Neil (JLab) Marc Vanderhaeghen (U. Mainz)

For information contact: http://web.mit.edu/Ins/PEB_Workshop/ Email: pebworkshop@mit.edu

General Experiment Kinematics

Comparison: P2 with and without back angle measurement

E/Me∨	θ/deg	∆θ/deg	∆sin²(θ _w)/10⁻⁴	$\Delta sin^2(\theta_w)/sin^2(\theta_w)$
240	17	18	3.57	0.15 %
200	20	20	3.60	0.15 %
150	24	20	3.97	0.17 %
130	25	20	4.33	0.18 %

Without back angle measurement

With back angle measurement

E/Me∨	θ/deg	∆θ/deg	∆sin²(θ _w)/10 ⁻⁴	$\Delta sin^2(\theta_w)/sin^2(\theta_w)$
240	24	18	2.41	0.10 %
200	28	16	2.52	0.11 %
150	33	18	2.73	0.11 %
130	37	18	2.87	0.12 %

• $\Delta sin^2(\theta_w)$ drops from 3.60·10⁻⁴ to 2.52·10⁻⁴ \rightarrow possible reduction of Δt

• $sin^{2}(\theta_{w})$ -measurement at larger scattering angles (more easy to measure)

Polarimetry (<0.5%)

The double scattering Mott polarimeter:

Mott Polarimeter:

- Measuring left/right asymetry to calculate spin polarisation
- Analysing power of target foils has to be extrapolated

Double Scattering Polarimeter (DSP):

- Analysing power of the targets can be calculated directly from measurements
- Allows for higher precision measurement of spin polarisation
- Invasive polarimetry at the electron source

Institut für Kernph

A. Gellrich and J. Kessler, Phys. Rev. A 43, 204 (1991)

Hydro Möller Polarimeter

The promise:(*)

- Hydro-Möller: Atomic trap with completely electron-spin polarized Hydrogen
- Online capability, high accuracy (<0.5%)
- Statistical efficiency approaches 0.5% in 2 hours (Target: 3*10⁻¹⁶ cm⁻²)
- Acceptance similar to conventional Möller

^(*)E. Chudakov, V. Luppov: IEEE Trans. Nucl. Sc. 51, 1533 (2004)

Corroded ³He/⁴He dilution Refrigerator (achieved 27mW^(*) At 0.35K)

Solenoid (Beam) axis

Complete trap with 77mm diam. Cold bore 7T Solenoid $\Delta B/B < 10^{-5} (1 \text{ cm}^3 \text{ Volume})^{(**)}$

(*): T. Roser et. al. NIM A **301** 42-46 (1990)
 (**): W. Kaufmann et. al. NIM A **335** 17-25 (1993)

Detector Concept

Experiment Design Simulations: What Magnetic field configuration can we use?

Weapon of choice: Solenoid or Toroid?

Dominik Becker

Experiment Design Simulations: Toroid possible!

Toroid full simulation

Experiment Design Simulations: Solenoid possible!

Geant 4 simulation: Tracking in the magnetic field

JGU

Institut für Kernphysik

Experiment Design Simulations: Solenoid possible!

JG U

Institut für Kernphysik

Experiment Design Simulations: Solenoid possible!

JGU

Institut für Kernphysik

Experiment Design Simulations: Solenoid possible!

JGU

Institut für Kernphysik

Experiment Design Simulations: Solenoid possible!

First detector prototype tests

First detector prototype tests

GU First detector prototype tests	Setup	Varying parameter
	Spectrosil 2000 polished Wrapped with Alanod Light guide: Alanod	Different impact positions horizontal, vertical In total 25 runs
	Spectrosil 2000 polished Wrapped with Millipore Light guide: Alanod	Different angles In total 15 runs
About 100 runs taken Variation of	Spectrosil 2000 unpolished Light guide: Alanod	Unwrapped, Wrapped 45°, 90° In total 6 runs
 Flame polished/unpolished Wrapping Light guide material Impact positions Orientation 	Spectrosil 2000 polished Wrapped with Millipore Lightguide: Mylar	Different angles In total 12 runs
	Spectrosil 2000 polished Wrapped with Alanod No Lightguide	Different impact positions In total 19 runs
	Spectrosil 2000 polished Wrapped with Mylar No Lightguide	Different impact positions In total 9 runs
	Spectrosil 2000 polished Wrapped with Millipore No lightguide	Different impact positions Different angles In total 13 runs

JGU

First detector prototype tests

First detector prototype tests

First detector prototype tests

Number p. e. vs Filter wavelength [nm]

First detector prototype tests

Angle scan - Lightguide Mylar - Millipore wrapped

Timeline P2

Conclusions:

sin²(theta_w) important parameter of the standard model measure through weak charge of the proton

Precise determination important for test of standard model on the two loop level, sensitivity to new physics

Theory: Work in Progress to calculate Box-graphs, EM-radiative corrections, Hadronic Contributions, Running

Polarimetry/Beam diagnosis: Project defined, Solenoid usable, ³He/⁴He-mixture cryostat to be renewed, Double Scattering Polarimeter has first data.

Experiment Design Simulations: Solenoid will work

First Beam Tests: Test of detetctor materials and PMTs: Already light output sufficient!

Ready to form international collaboration (Almost) Ready to design the experiment