Light-quark baryon spectroscopy and nucleon structure

Volker D. Burkert Jefferson Lab

- Motivation
- Establishing the N* spectrum
- Electroproduction and N* Structure
- Gluonic (bybrid) baryons
- Conclusions

1

Hirschegg 2014, Hadrons from Quarks to Gluons

First baryon resonance and beyond

Total Cross Sections of Positive Pions in Hydrogen*

H. L. ANDERSON, E. FERMI, E. A. LONG,[†] AND D. E. NAGLE Institute for Nuclear Studies, University of Chicago, Chicago, Illinois (Received January 21, 1952)

First baryon resonance and beyond

What do we expect to learn?

 Understand the effective degrees-of-freedom underlying the N* spectrum and quantify the effective forces between them.

- Is chiral symmetry restored for high mass states? Parity doublets?
- Vigorous experimental program needed along two avenues
 - Search for undiscovered states in meson photoproduction to characterize the systematic of the spectrum (JLab, GRAAL, CBELSA, MAMI, BESIII)
 - Measure the strength of resonance excitations for prominent states versus distance scale in meson electroproduction (JLab/JLab12)
- Developments in theory connecting experiment to QCD

Hirschegg 2014, Hadrons from Quarks to Gluons

Modern tools for N* and Δ* studies

- Large acceptance for precision measurements of e.m. induced 2body processes in wide kinematics
- Polarized beams, targets, recoil baryons
- Measure more complex reactions to access high mass states, e.g N ω/ϕ , N $\pi\pi$, N $\pi\eta$

Engagement of groups to extract physics in theoretically sound analyses is essential.

Recent reviews:

- I.G. Aznauryan, et al. (White Paper), Int. J. Mod. Phys. E, 22, 1330015 (2013)
- V. Crede, W. Roberts, Rept. Prog. Phys. 76 (2013)
- I.G. Aznauryan, V. D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)
- L. Tiator, D. Drechsel, S. Kamalov, M. Vanderhaeghen, Eur. Phys. J. (2011)
- E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010)

Establishing the nucleon spectrum

_

N/Δ spectrum in RPP 2012

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	010 2012
$p \qquad 1/2^+ (P_{11}) \qquad * * * * \qquad * * * \qquad \Delta(1232) \qquad 3/2^+ (P_{33}) \qquad * *$	* ** * * **
$n \qquad 1/2^+ (P_{11}) \qquad * * * * \qquad * * * \qquad \Delta(1600) \qquad 3/2^+ (P_{33}) \qquad * * * * * = (1600) \qquad 3/2^+ (P_{33}) \qquad * = (1600) \qquad (1600) \qquad 3/2^+ (P_{33}) \qquad * = (1600) \qquad (1600) \qquad 3/2^+ (P_{33}) \qquad * = (1600) \qquad (1600) \qquad 3/2^+ (P_{33}) \qquad * = (1600) \qquad (1600) \qquad (1600) \qquad 3/2^+ (P_{33}) \qquad * = (1600) \qquad (160$	** ***
$N(1440)$ 1/2 ⁺ (P ₁₁) **** *** $\Delta(1620)$ 1/2 ⁻ (S ₃₁) **	* ** ****
$N(1520) 3/2^{-}(D_{13}) * * * * * * * \Delta(1700) 3/2^{-}(D_{33}) * *$	* ** ****
$N(1535) 1/2^{-}(S_{11}) \qquad * * * * * * * \Delta(1750) 1/2^{+}(P_{31}) \qquad *$	*
$N(1650) 1/2^{-}(S_{11}) \qquad * * * * * * * \Delta(1900) 1/2^{-}(S_{31}) \qquad * *$	* **
$N(1675) 5/2^{-}(D_{15}) * * * * * * * \Delta(1905) 5/2^{+}(F_{35}) * = 5$	* ** ****
$N(1680) 5/2^+(F_{15}) \qquad * * * * * * * \Delta(1910) 1/2^+(P_{31}) \qquad * * * * = * * * * \Delta(1910) 1/2^+(P_{31}) \qquad * = * * * * * * * * * * * * * * * * *$	* ** ****
N(1685) *	
$N(1700) 3/2^{-}(D_{13}) * * * * * * \Delta(1920) 3/2^{+}(P_{33}) * *$	** ***
$N(1710)$ $1/2^+(P_{11})$ *** ** $\Delta(1930)$ $5/2^-(D_{35})$ **	** ***
$N(1720) 3/2^+(P_{13}) \qquad * * * * & * * * & \Delta(1940) 3/2^-(D_{33}) \qquad *$	**
N(1860) 5/2 ⁺ **	
$N(1875)$ $3/2^-$ ***	
N(1880) 1/2 ⁺ **	
N(1895) 1/2 ⁻ **	
$N(1900) 3/2^+(P_{13}) ** *** \Delta(1950) 7/2^+(F_{37}) **$	* ** ****
$N(1990)$ 7/2 ⁺ (F ₁₇) ** ** $\Delta(2000)$ 5/2 ⁺ (F ₃₅) **	* **
$N(2000)$ 5/2 ⁺ (F ₁₅) ** ** $\Delta(2150)$ 1/2 ⁻ (S ₃₁) *	*
$N(2080)$ D_{13} ** $\Delta(2200)$ $7/2^{-}(G_{37})$ *	*
$N(2090)$ S_{11} * $\Delta(2300)$ $9/2^+(H_{39})$ **	* **
N(2040) 3/2 ⁺ *	
N(2060) 5/2 ⁻ **	
$\frac{N(2100)}{1/2^{+}(P_{11})} * * \Delta(2350) 5/2^{-}(D_{35}) *$	*
N(2120) 3/2 ⁻ **	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	*
$N(2200)$ D_{15} ** $\Delta(2400)$ $9/2^{-}(G_{39})$ **	* **
$N(2220) 9/2^+(H_{19}) **** *** \Delta(2420) 11/2^+(H_{3,11}) **$	* ** ****
$N(2250) 9/2^{-}(G_{19}) * * * * * * * \Delta(2750) 13/2^{-}(I_{3,13}) * *$	* **
$N(2600) 11/2^{-}(I_{1,11}) * * * * * * \Delta(2950) 15/2^{+}(K_{3,15}) * *$	* **
N(2700) 13/2 ⁺ (K _{1,13}) ** **	

Photoproduction data from JLAB, CBELSA, GRAAL, LEPS

Are we observing spin multiplets or parity doublets with the new states?

We need to verify candidate states and establish higher mass states.

SU(6)xO(3) Classification of Baryons

Hirschegg 2014, Hadrons from Quarks to Gluons

SU(6)xO(3) Classification of Baryons

SU(6)xO(3) Classification of Baryons

N* spectrum in LQCD

R. Edwards et al., Phys.Rev. D84 (2011) 074508

Ignoring the mass scale, new candidate states fit with the J^P values predicted from LQCD.

Hirschegg 2014, Hadrons from Quarks to Gluons

The N(1900)3/2+ State

- State now solidly established in coupled-channel analysis making use of very precise KA crs and polarization data, let to the *** assignment in PDG2012.
- State was confirmed in covariant isobar model single channel analysis γp → K⁺Λ (T. Mart & M. J. Kholili , PRC86 (2012) 022201)
- Confirmed in an effective Langrangian resonance model analysis (O. V. Maxwell, PRC85,034611, 2012) in γp → K ⁺Λ data.
- State fulfills criteria for elevation to **** status. First baryon resonance observed and confirmed in electromagnetic meson production.

Complete photoproduction experiments

$$\gamma + p \longrightarrow K^+ + \Lambda (p\pi^-)$$

- Process described by 4 complex amplitudes
- 8 well-chosen measurements are needed to determine amplitude.
- Up to 16 observables measured directly
- Inferred from double polarization observables
- 13 inferred from triple polarization observables

Beam (P^{γ})		Ta	rget (P^T)	Re	coil (1	\mathcal{P}^{R})	Target (P^T) + Recoil (P^R)								
					x'	y'	z'	x'	x'	x'	y'	y'	y'	z'	z'	z'
		x	\boldsymbol{y}	z				x	y	z	x	y	z	x	y	z
unpolarized de	σ_0		\hat{T}			\hat{P}		$\hat{T}_{x'}$		$\hat{L}_{x'}$		$\hat{\underline{\Sigma}}$		$\hat{T}_{z'}$		$\hat{L}_{z'}$
$P_L^{\gamma} \sin(2\phi_{\gamma})$		\hat{H}		\hat{G}	$\hat{O}_{x'}$		$\hat{O}_{z'}$		$\hat{\mathbf{C}}_{\mathbf{z}'}$		Ê		$\hat{\mathbf{F}}$		$-\hat{\mathbf{C}}_{\mathbf{x}'}$	
$P_L^{\gamma}\cos(2\phi_{\gamma})$ –	÷Σ		$-\hat{P}$]		$-\hat{T}$]	$-\hat{\mathbf{L}}_{\mathbf{z}'}$		$\hat{\mathbf{T}}_{\mathbf{z}'}$		$-d\sigma_0$)	$\hat{\mathbf{L}}_{\mathbf{x}'}$		$-\hat{T}_{\mathbf{x}'}$
circular P_c^{γ}		\hat{F}		$-\hat{E}$	$\hat{C}_{x'}$		$\hat{C}_{z'}$		$-\hat{\mathbf{O}}_{\mathbf{z}'}$		Ĝ		$-\hat{\mathbf{H}}$		$\hat{\mathbf{O}}_{\mathbf{x}'}$	

A. Sandorfi, S. Hoblit, H. Kamano, T.-S.H. Lee, J.Phys. 38 (2011) 053001

Towards "complete" experiments with CLAS

Obser ables	σ	Σ	т	Р	E	F	G	н	T _x	Tz	L _x	L	0 _x	O _z	C _x	C _z		
✓ published ✓ acquired or under analysis																		
ρ π ⁰	~	~	1	(🗸)	1	1	1	1	Proton targets									
nπ⁺	v	v	1	(🗸)	1	1	1	1										
рη	v	1	1	(🗸)	1	1	1	1										
ρη'	v	1	1	(🗸)	1	1	1	1										
ρω/φ	v	1	1	(🗸)	1	1	1	1	Tensor polarization, SDME									
K⁺Λ	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	~		
K+Σ0	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	~		
K ^{0*} Σ+	~	1									1	1						
pπ ⁻	•	1		(🗸)	1	1	1											
pρ	1	1		(🗸)	1	1	1		Neutron targets									
Κ -Σ+	1	1		(🗸)	1	1	1											
K₀V	1	1		1	1	1	1		1	1	1	1	1	1	1	1		
Κ⁰Σ⁰	1	1		1	1	1	1		1	1	1	1	1	1	1	1		
K ^{0*} Σ ⁰	1	1									1	1						

1/13/14

Polarized photon beam asymmetry Σ

Hirschegg 2014, Hadrons from Quarks to Gluons

1/13/14

N* states in $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$

Differential cross sections $\gamma p \rightarrow p \phi \rightarrow p K K$

First precision measurement in 80 energy bins at W=10 MeV, and nearly full angle range (CLAS).

$$\phi \rightarrow K^+K^- \phi \rightarrow K^0_{\ s}K^0_{\ l}$$

Electroexcitation of N/Δ resonances

Virtual photon probes resonance strength vs distance

The N₍₁₂₃₂₎ Transition

- Large MB contributions (1/3) needed to describe magnetic dipole transition at Q²=0
- For G^*_{M} the MB contribution are decreasing with increasing Q^2
- R_{EM} and R_{SM} well described with MB contributions only
- No approach to asymptotic behavior R_{EM} => +100%

1/13/14

Electrocouplings of 'Roper' N(1440)1/2+

Aznauryan et al. (CLAS), PRC80, 055203 (2009), V. Mokeev et al. (CLAS), PRC86, 035203 (2012)

- nrQM assign it to the 1^{st} radial excitation of the nucleon, but fails in $A_{1/2}$
- $A_{1/2}$ dominant amplitude at high Q^2 indicates radial q^3 excitation but fails at low Q^2
- Significant meson-baryon coupling needed to describe small Q² behavior

• $A_{1/2}(Q^2)$ and $S_{1/2}(Q^2)$ are inconsistent with gluonic excitation

Electrocouplings of N(1520)3/2⁻

1/13/14

From Q² dependence to charge densities

Electrocouplings of the N(1535)1/2⁻

Dynamical model analyses show the state may have a significant coupling to KΛ and pφ which could indicate sizeable qqqs-sbar component in the w.f.

- Could explain the mass ordering, the large pη branching ratio, and sign of S_{1/2} at low Q².
- Are there N* states with significant N*-> pφ coupling, similar to N(1535)1/2⁻ -> Nη ?
 => Include high statistics γp-> pφ data in coupled-channel PWA.

Meson-Baryon contributions to N(1675)5/2⁻

- Measures the meson-baryon contribution to $\gamma^* pN(1675)5/2^-$ directly
- Calibrate the dynamical coupled-channel model input
 - E. Santopinto and M. M. Giannini, PRC 86, 065202 (2012)
 - B. Juliá-Díaz, T.-S.H. Lee, et al., PR C 77, 045205 (2008)

Gluonic Baryons q³G

Hybrid states have same J^P values as q³ baryons. How to identify them?

- Overpopulation of N1/2⁺ and N3/2⁺ states compared to QM projections?
- Transition form factors in electroproduction?

Separating q³G from q³ states?

Z.P. Li, V. Burkert, Zh. Li, PRD 46, 70, 1992; C.E. Carlson, N. Mukhopadhyay, PRL 67, 3745, 1991

Lowest mass $|q^{3}G\rangle$ with $J^{P=1/2^{+}}$ behave like the $\Delta(1232)$

For higher mass gluonic "Roper" $A_{1/2}(Q^2)$ expected to drop very fast with Q^2 , and $S_{1/2}(Q^2) = 0$

Conclusions

- Evidence for many new states revealed in coupled-channel analysis involving high precision KΛ and KΣ photoproduction reactions.
- Meson photoproduction is reaching the "holy grail" of complete measurements, allowing major advances in the search for new states.
- For access to high mass excited nucleon states precision vector meson production data need to be incorporated in coupled-channel analyses.
- Meson electroproduction reveals strength of quark and meson-baryon degrees of freedom in N* transitions and could be essential to identify hybrid baryons.
- Transverse transition densities reveal complex charge distributions. High Q² data are needed to access the short distance behavior that is most uncertain.