Structure and Cooling of Compact Stars obeying Modern Constraints

David Blaschke (Wroclaw University, JINR Dubna)
Structure and Cooling of Compact Stars obeying Modern Constraints

David Blaschke (Wroclaw University, JINR Dubna)

PSR J1614-2230
M=(1.97+/−0.04) M_\text{sun}

Demorest et al., Nature (2010)
Structure and Cooling of Compact Stars obeying Modern Constraints

David Blaschke (Wroclaw University, JINR Dubna)

Facets of Strong Interaction Physics, Hirschegg, January 17, 2012

Neutron star in SNR Cas A
Fast cooling directly observed

Ho & Heinke, Nature (2009)
Structure and Cooling of Compact Stars obeying Modern Constraints

David Blaschke (Wrocław University, JINR Dubna)

Thanks to ‘cool’ coauthors: Hovik Grigorian, Fridolin Weber, Dima Voskresensky and ‘dense’ ones: Thomas Klaehn, Rafał Lastowiecki, Fredrik Sandin, Daniel Zablocki

Facets of Strong Interaction Physics, Hirschegg, January 17, 2012
PSR J1614-2230 - A new constraint for the Compact Star EoS

- NS-WD binary in Scorpius
- NS is recycled MSP with $P = 3.15$ ms
- almost edge-on, inclination 89.17°
- Shapiro delay measured!
- $M_{WD} \sim 0.5 \, M_\odot$
- $M_{NS} = (1.97 \pm 0.04) \, M_\odot$
PSR J1614-2230 - A new constraint for the Compact Star EoS

- NS-WD binary in Scorpius
- NS is recycled MSP with $P = 3.15$ ms
- almost edge-on, inclination 89.17°
- Shapiro delay measured!
- $M_{WD} \sim 0.5 \, M_\odot$
- $M_{NS} = (1.97 \pm 0.04) \, M_\odot$

Demorest et al., Nature 467, 1081 (2010)
PSR J1614-2230 - A new constraint for the Compact Star EoS

Demorest et al., Nature 467, 1081 (2010)
PSR J1614-2230 - A new constraint for the Compact Star EoS

Klähn et al., PLB 654, 170 (2007)
PSR J1614-2230 - A new constraint for the Compact Star EoS

State-of-the-art hybrid EoS model:

- Chiral symmetry restoration
- Color superconductivity
- Vector meanfield “stiffening”

PSR J1614-2230 - A new constraint for the Compact Star EoS

State-of-the-art hybrid EoS model:
- Chiral symmetry restoration
- Color superconductivity
- Vector meanfield “stiffening”

Constraints from heavy-ion collisions:
- Flow constraint at high densities
- Not too early onset of quark matter

QCD phase diagram

Klähn et al., PLB (2007), arxiv:1101.6061

Phenomenological Quark Matter EoS:

$$\Omega_{QM} = -\frac{3}{4\pi} a_4 \mu^4 + \frac{3}{4\pi^2} a_2 \mu^2 + B_{\text{eff}}$$

If the critical density for chiral restoration/deconfinement is reached in the compact star core, then $M_{1614} = 1.97 \pm 0.04$ M_\odot implies the following:

- Quark matter is strongly interacting, QCD corrections (a_4) important
- Quark matter is color superconducting: $a_2 \leq 0$
Constraints from PSR J1614-2230 for Quark Matter EoS

Phenomenological Quark Matter EoS:

\[
\Omega_{QM} = -\frac{3}{4\pi} a_4 \mu^4 + \frac{3}{4\pi^2} a_2 \mu^2 + B_{\text{eff}}
\]

If the critical density for chiral restoration/deconfinement is reached in the compact star core, then \(M_{J1614} = 1.97 \pm 0.04 \, M_\odot \) implies the following:

- Quark matter is strongly interacting, QCD corrections \((a_4) \) important
- Quark matter is color superconducting: \(a_2 \leq 0 \)

L. Bonanno & A. Sedrakian, 1108.0559 (2011)
T. Klahn et al., 1111.6889; R. Lastowiecki et al. (in preparation)
Extreme States of Matter - The Phase Diagram

Partition function as a Path Integral (imaginary time $\tau = i t$)

$$Z[T, V, \mu] = \int D\bar{\psi} D\psi \exp \left\{ - \int_0^\beta d\tau \int_V d^3 x [\bar{\psi}(i\gamma^\mu \partial_\mu - m - \gamma^0(\mu + \lambda_3 \phi_3) + \gamma^0(\mu + \lambda_8 \phi_8 + i\lambda_3 \phi_3) \psi - \mathcal{L}_{\text{int}} + U(\Phi)] \right\}$$

Polyakov loop: $\Phi = N_c^{-1} \text{Tr}_c[\exp(i\beta \lambda_3 \phi_3)]$ Order parameter for deconfinement

Current-current interaction (4-Fermion coupling) and KMT determinant interaction

$$\mathcal{L}_{\text{int}} = \sum_{M=M_{\pi,\rho,\ldots}} G_M (\bar{\psi} \Gamma_M \psi)^2 + \sum_D G_D (\bar{\psi}^D \Gamma_D \psi)^2 - K[\det_\text{f}(\bar{q}(1 + \gamma_5)q) + \det_\text{f}(\bar{q}(1 - \gamma_5)q)]$$

Bosonization (Hubbard-Stratonovich Transformation)

$$Z[T, V, \mu] = \int D\Delta_M D\Delta_\Delta e^{-\sum_{M,D} \frac{\Delta_M^2}{4G_M} - \frac{\Delta_\Delta^2}{4G_D} + \frac{1}{2} \text{Tr} \ln S^{-1}[\{M_M\},\{\Delta_D\},\Phi] + U(\Phi) + \gamma_{\text{KMT}}}$$

Collective quark fields: Mesons (M_M) and Diquarks (Δ_D); Gluon mean field: Φ

Systematic evaluation: Mean fields + Fluctuations

- Mean-field approximation: order parameters for phase transitions (gap equations)
- Lowest order fluctuations: hadronic correlations (bound & scattering states)
- Higher order fluctuations: hadron-hadron interactions
NJL Model for Neutral 3-Flavor Quark Matter

Thermodynamic Potential $\Omega(T, \mu) = -T \ln Z[T, \mu]$

$$\Omega(T, \mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} + \frac{K(\phi_u + \phi_d + \phi_s)}{16G_S^3} - \frac{(\mu^* - \mu)^2}{4G_V}$$

$$- T \sum_n \int \frac{d^3 p}{(2\pi)^3} \frac{1}{2} \text{Tr} \ln \left(\frac{1}{T} S^{-1}(i\omega_n, \vec{p}) \right) + U(\Phi) + \Omega_e - \Omega_0.$$

Inverse Nambu–Goldstone Propagator $S^{-1}(i\omega_n, \vec{p}) = \left[\begin{array}{cc} \gamma_\mu p^\mu - M(\vec{p}) + \mu \gamma^0 & \tilde{\Lambda}(\vec{p}) \\ \tilde{\Lambda}^\dagger(\vec{p}) & \gamma_\mu p^\mu - M(\vec{p}) - \mu \gamma^0 \end{array} \right].$

Fermion Determinant $(\text{Tr} \ln D = \ln \det D)$:

$$\ln \text{det} \left[\begin{array}{cc} \beta S^{-1}(i\omega_n, \vec{p}) \end{array} \right] = 2 \sum_{a=1}^{18} \ln \left\{ \beta^2 \left[\omega_n^2 + \lambda_a(\vec{p})^2 \right] \right\}.$$

Result for the thermodynamic Potential (Meanfield approximation)

$$\Omega(T, \mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} + \frac{K(\phi_u + \phi_d + \phi_s)}{16G_S^3} - \frac{(\mu^* - \mu)^2}{4G_V}$$

$$- \int \frac{d^3 p}{(2\pi)^3} \sum_{a=1}^{18} \left[\lambda_a + 2T \ln \left(1 + e^{-\lambda_a/T} \right) \right] + U(\Phi) + \Omega_e - \Omega_0.$$

Color and electric charge neutrality constraints: $n_Q = n_3 = n_3 = 0$, $n_\xi = -\partial \Omega / \partial \mu_\xi = 0$.

Equations of state: $P = -\Omega$, etc.
PHASES OF QCD @ EXTREMES: NO COLOR NEUTRALITY
Phase Diagram for Symmetric Matter (HIC)

- Critical density for chiral restoration $n_\chi \geq 1.5 \ n_0$ increasing (!) with low T
- Almost crossover (masquerade!), i.e. small density jump, small latent heat/time delay in heavy-ion coll.
- High $T_c \approx 0.9 T_d$ for 2SC phase due to Polyakov loop.
- 2SC - CFL phase transition at $n \geq 6 \ n_0$ with density jump and latent heat/time delay! Provided the temperature can be kept low $T \leq 100 \text{ MeV}$

Exploring the QCD Phase Diagram: Trajectories

Heavy-Ion Collisions:

- URQMD
- $b=0$
- $b=0.5$ fm/c
- Mixed phase: RMF-2SC PNJL
- $\eta_s=0$, $\eta_V=0.25$

Supernova Explosions (15 M_\odot):

Liebendoerfer et al. (2005)
Sagert et al., PRL 102 (2009)

Fischer et al., arxiv: 1103.3004
Mass - radius constraints from quiescent LMXB's and RXJ 1856 \Rightarrow Small AND large stars?
NJL with KMT allows for mass twins! Direct transition DBHF-CFL possible!

Flow constraint \Rightarrow PT not too early! No direct DBHF-CFL trans.!

HYBRID-EoS robust? Role of KMT det - Twins!

- Mass - radius constraints from quiescent LMXB's and RXJ 1856 \(\Rightarrow\) Small AND large stars? NJL with KMT allows for mass twins! Direct transition DBHF-CFL possible!
 - Flow constraint \(\Rightarrow\) PT not too early! No direct DBHF-CFL trans.!

Covariant, nonlocal interaction model:

\[\mathcal{L}_{\text{int}} = - \int d^4x \left\{ \frac{G_S f_S}{2} j_S^f(x) j_S^f(x) + \frac{H}{2} [j_B^o(x)]^\dagger j_B^o(x) + \frac{G_V}{2} j_V^o(x) j_V^o(x) \right\} \]

Nonlocal currents, e.g.

\[j_S^f(x) = \int d^4z \ g(z) \ \bar{\psi}(x + \frac{z}{2}) \Gamma_f \psi(x - \frac{z}{2}) , \]

Recent developments: Radzhabov et al., arxiv:1012.0664; Horvatic et al., arxiv:1012.2113
Hybrid-EoS Robust? Constraints & Covariant NCQM

- Covariant, nonlocal interaction model:
 \[\mathcal{L}_{\text{int}} = - \int d^4x \left\{ \frac{G_S}{2} j_S^f(x) j_S^f(x) + \frac{H}{2} [j_B^g(x)]^\dagger j_B^g(x) + \frac{G_V}{2} j_V^f(x) j_V^f(x) \right\} \]

- Nonlocal currents, e.g.
 \[j_S^f(x) = \int d^4z \ g(z) \ \bar{\psi}(x + \frac{z}{2}) \ \Gamma_f \ \psi(x - \frac{z}{2}) \]

Recent developments: Radzhabov et al., arxiv:1012.0664; Horvatic et al., arxiv:1012.2113
Large Mass ($\sim 2 \, M_\odot$) and radius ($R \geq 12 \, \text{km}$) \Rightarrow stiff EoS;

Flow in Heavy-Ion Collisions \Rightarrow not too stiff EoS!

Sandin et al., CompOSE project (2009-10); See also: Klähn, D.B., Sandin, Fuchs, Faessler, Grigorian, Röpke, Trümper, PLB 654, 170 (2007)
Mass-Radius Constraint and Flow Constraint

- Large Mass ($\sim 2 \, M_\odot$) and radius ($R \geq 12 \, \text{km}$) \Rightarrow stiff EoS;
- Flow in Heavy-ion Collisions \Rightarrow not too stiff EoS!

Sandin et al., CompOSE project (2009-10); See also: Klähn, D.B., Sandin, Fuchs, Faessler, Grigorian, Röpke, Trümper, PLB 654, 170 (2007)
Large Mass ($\sim 2M_\odot$) and radius ($R \geq 12$ km) \Rightarrow stiff EoS;

Flow in Heavy-ion Collisions \Rightarrow not too stiff EoS!

Implications from PSR J1614-2230 within 3fCS NJL – DBHF model

If hybrid star, Then:
- 2SC QM
- Vector MF
- HIC: \(n_c \sim 4n_0 \)

If no hybrid star, then:
- small (<0.85) diquark coupl.
- HIC: \(n_c > 4.5n_0 \)
Same hybrid model (3fCS NJL – DBHF), smaller chiral condensate (quark mass)

R. Lastowiecki et al., in preparation

If hybrid star, Then:
- 2SC QM
- Vector MF
- HIC: $n_c \sim 2-3 \times n_0$

If no hybrid star, then:
- small (<0.85) diquark coupl.
- HIC: $n_c > 2 \times n_0$
The question of hyperons and quark-hyperon hybrids

- Hyperonic matter without strange vector meson repulsion → too soft; Demorest constraint failed
- Inclusion of phi-meson repulsion → OK
- Phase transition: “masquerade” problem ...
- Density dependence of gluon sector (bag)!

Lastowiecki et al., 1112.6430 [nucl-th]
Exploring hybrid star matter at NICA & FAIR

T.Klähn (1), D.Blaschke (1,2), F.Weber (3)

(1) Institute for Theoretical Physics, University of Wroclaw, Poland
(2) Joint Institute for Nuclear Research, Dubna
(3) Department of Physics, San Diego State University, USA

Heavy-Ion Collisions

- stiff EoS (at flow limit)
- low n_{crit} (at NICA fixT)
- soft EoS (dashed line)

Compact Stars

- high M_{max} (J1614-2230)
- low M_{onset} (all NS hybrid)
- excluded (J1614-2230)

Proposal:

1. Measure transverse and elliptic flow for a wide range of energies (densities) at NICA and perform Danielewicz's flow data analysis ---> constrain stiffness of high density EoS
2. Provide lower bound for onset of mixed phase ---> constrain QM onset in hybrid stars

Conclusions I

- PSR 1614-2230 ("Demorest-pulsar") puts strong constraints to dense matter EoS
- Both alternatives for the inner structure, hadronic and hybrid star, are viable for the Demorest pulsar; HIC favors hybrid model
- If Demorest pulsar has a quark matter (QM)core, then QM must:
 - be color superconducting
 - have a strong (vector-field) repulsion
 - occur at >2 n_0 in HIC, depending on $\langle \bar{q}q \rangle$
- Discriminating test? Measure M-R relation !!
Neutron Star in Cassiopeia A (Cas A)

- 16.08.1680 John Flamsteed
 - 6m star 3 Cas
- 1947 re-discovery in radio
- 1950 optical counterpart
 - $T \sim 30 \text{ MK}$
 - $V_{\text{exp}} \sim 4000 - 6000 \text{ km/s}$
- distance 11.000 ly = 3.4 kpc

picture: spitzer space telescope

Page, Prakash, Lattimer, Steiner, PRL (2011); arxiv:1011.6142

Shternin, Yakovlev, Heinke, Ho, Patnaude, MNRAS (2011); arxiv:1012.0045

Cas A Cooling Observations

Cas A is a rapidly cooling star – Temperature drop ~4% in 10 years

Cas A Cooling Observations
The influence of the (core) heat conductivity

Phase Diagram & Cooling Simulation

- Description of the stellar matter - local properties
- Modeling of the self bound compact star - including the gravitational field
- Extrapolations of the energy loss mechanisms to higher densities and temperatures
- Consistency of the approaches
Cooling Mechanism

\[\frac{dU}{dt} = \sum_i C_i \frac{dT}{dt} = -\varepsilon_\gamma - \sum_j \varepsilon_j^i \]

Cooling Processes

- **Direct Urca:** \(n \rightarrow p + e + \bar{\nu}_e \)
- **Modified Urca:** \(n + n \rightarrow n + p + e + \bar{\nu}_e \)
- **Photons:** \(\rightarrow \gamma \)
- **Bremsstrahlung:** \(n + n \rightarrow n + n + \nu + \bar{\nu} \)
Cooling Evolution

The energy flux per unit time $l(r)$ through a spherical slice at distance r from the center is:

$$l(r) = -4\pi r^2 k(r) \frac{\partial (Te^\Phi)}{\partial r} e^{-\Phi} \sqrt{1 - \frac{2M}{r}}.$$

The equations for energy balance and thermal energy transport are:

$$\frac{\partial}{\partial N_B} (le^{2\Phi}) = -\frac{1}{n} (\epsilon_\nu e^{2\Phi} + c_V \frac{\partial}{\partial t} (Te^\Phi))$$

$$\frac{\partial}{\partial N_B} (Te^\Phi) = -\frac{1}{k} \frac{le^\Phi}{16\pi^2 r^4 n}$$

where $n = n(r)$ is the baryon number density, $NB = NB(r)$ is the total baryon number in the sphere with radius r

$$\frac{\partial N_B}{\partial r} = 4\pi r^2 n (1 - \frac{2M}{r})^{-1/2}$$

F. Weber: Pulsars as Astro. Labs ... (1999);
Neutrino Emissivities in Quark Matter

- Quark direct Urca (QDU) the most efficient process

\[d \rightarrow u + e + \bar{\nu} \quad \text{and} \quad u + e \rightarrow d + \nu \]

\[\epsilon_{\nu}^{QDU} \approx 9.4 \times 10^{26} \alpha_s Y_e^{1/3} \zeta_{QDU} T_9^6 \text{ erg cm}^{-3} \text{ s}^{-1}, \]

Compression \(n/n_0 \approx 2 \), strong coupling \(\alpha_s \approx 1 \)

- Quark Modified Urca (QMU) and Quark Bremsstrahlung

\[d + q \rightarrow u + q + e + \bar{\nu} \quad \text{and} \quad q_1 + q_2 \rightarrow q_1 + q_2 + \nu + \bar{\nu} \]

\[\epsilon_{\nu}^{QMU} \approx \epsilon_{\nu}^{QB} \approx 9.0 \times 10^{19} \zeta_{QMU} T_9^8 \text{ erg cm}^{-3} \text{ s}^{-1}. \]

- Suppression due to the pairing

\[\overset{\text{QDU}}{\zeta_{QDU}} \sim \exp(-\Delta_q/T) \]

\[\overset{\text{QMU} \; \text{and} \; \text{QB}}{\zeta_{QMU}} \sim \exp(-2\Delta_q/T) \; \text{for} \; T < T_{\text{crit},q} \approx 0.57 \Delta_q \]

- Enhanced cooling due to the pairing

\[e^+ e^- \rightarrow e^+ e^- \nu^+ \bar{\nu} \] (becomes important for \(\Delta_q/T >> 1 \))

\[\epsilon_{\nu}^{ee} = 2.8 \times 10^{12} Y_e^{1/3} u^{1/3} T_9^8 \text{ erg cm}^{-3} \text{ s}^{-1}, \]

Quark PBF
Surface Temperature & Age Data
Crust Model

Time dependence of the light element contents in the crust

\[\Delta M_L(t) = e^{-t/\tau} \Delta M_L(0) \]

DU constraint

\[n \rightarrow p + e + \bar{\nu}_e \text{ implies } p_n \leq p_p + p_e, \text{ charge neutrality results in} \]

\[
x_{DU}(x_e) \geq \frac{1}{1 + (1 + x_e^{1/3})^3}
\]

\[x_e = n_e/(n_e + n_\mu) \]

⇒ no muons: \[x_{DU} = 11.1\% \]

⇒ relativistic limit \((n_e = n_\mu)\): \[x_{DU} = 14.8\% \]

\[\text{NL}_\rho, \text{NL}_\rho \delta, \text{DBHF}: \]
DU occurs below \(2.5n_0\)
DU Thresholds

DU critical densities

\[n_c = 2.7 \, n_0 \quad \text{NLW (RMF)} \]

\[n_c = 5.0 \, n_0 \quad \text{HHJ (APR)} \]

DU critical masses

\[M_c = 1.25 \, \text{M}_{\odot} \quad \text{NLW} \]

\[M_c = 1.84 \, \text{M}_{\odot} \quad \text{HHJ} \]
DU problem & constraint
SC pairing gaps – hybrid stars

2SC phase: 1 color (blue) is unpaired (mixed superconductivity)
Ansatz 2SC + X phase:

\[\Delta_0^X = \Delta_0 \exp \left(\alpha \left(\frac{\mu - \mu_c}{\mu_c} \right) \right) \]

<table>
<thead>
<tr>
<th>Model</th>
<th>(\Delta_0) [MeV]</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>II</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>IV</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

Grigorian, DB, Voskresensky , PRC 71 (2005) 045801

Pairing gaps for hadronic phase (AV18 - Takatsuka et al. (2004))

SC pairing gaps – hybrid stars

Popov, Grigorian, Blaschke, PRC 74 (2006)
Influence of SC on luminosity

Critical temperature T_c, for the proton 1S_0 and neutron 3P_2 gaps, used in

T_c ‘measurement’ from Cas A

- 1.4 M⊙ star built from the APR EoS
- Rapid cooling at ages \sim30-100 yrs due to the thermal relaxation of the crust
- Mass dependence

Medium effects in cooling of neutron stars

- Based on Fermi liquid theory: Landau (1956), Migdal (1967), Migdal et al. (1990)
- MMU – instead of MU
- PBF – fast cooling process for $T < T_c$

\[
\epsilon_{\nu}[\text{MpPBF}] \sim 10^{29} \frac{m^*_N}{m_N} \left[\frac{p_{Fp}}{p_{Fn}(n_0)} \right] \left[\frac{\Delta_{pp}}{\text{MeV}} \right]^7 \\
\times \left[\frac{T}{\Delta_{pp}} \right]^{1/2} \xi_{pp}^2 \frac{\text{erg}}{\text{cm}^3 \text{sec}}, \ T < T_{cp}.
\]

\[
\frac{\epsilon_{\nu}[\text{MMU}]}{\epsilon_{\nu}[\text{MU}]} \sim 10^3 \left(\frac{n}{n_0} \right)^{10/3} \frac{\Gamma^6(n)}{[\omega^*(n)/m_\pi]^8},
\]

\[
\omega^*(n) = \frac{\omega^*(n_0)}{m_\pi} (1 - \Gamma) + \Gamma \frac{n}{n_0} (\xi_{pp} - 1) + \frac{n}{n_0} \xi_{pp} (1 - \Gamma) - \frac{n}{n_0} \xi_{pp} (1 - \Gamma).
\]
Anomalies because of PBF process

AV18 gaps, pi-condensate, without suppression of 3P2 neutron pairing - Enhanced PBF process

Gaps taken from Yakovlev at al. (2003)

The influence of the (core) heat conductivity

The influence of the (core) heat conductivity

Cas A as a Hadronic Star – arxiv:1108.4125

Evolution of T - profiles

Partial contributions to L

Pion Urca? See in 10 - 50 years!
Quark matter in compact stars: Cooling constraint

- Neutrinos carry energy off the star, Cooling evolution (schematic) by

$$\frac{dT(t)}{dt} = -\frac{\epsilon_\gamma + \sum_{j=Urca,\ldots} e_j^j}{\sum_{i=q,e,\gamma,\ldots} c_V^i}$$

- Most efficient process: Urca

- Exponential suppression by pairing gaps! $\Delta \sim 10\ldots100$ keV

Popov et al: Neutron star cooling constraints ...
PRC 74, 025803 (2006); [nucl-th/0512098]
Temperature in the Hybrid Star Interior

HYBRID STAR COOLING WITH 2SC QUARK MATTER (III)

2SC + X phase, $\Delta_0 = 5$ MeV, $\alpha = 25$
Temperature-age and Vela mass OK

Log N - Log S test passed
Cas A as an Hybrid Star
Cas A as Hybrid Star: T-profile evolution

M=1.707 M_{sun}
Hybrid: APR + 2SCX

```
M = 1.707 M_{sun}
Hybrid: APR + 2SCX
```
Conclusions II

- Cas A rapid cooling consistently described by the nuclear medium cooling model as a “first drop”, delayed by low conductivity
- Both alternatives for the inner structure, hadronic and hybrid star, are viable for Cas A; a higher star mass favors the hybrid model
- In contrast to the minimal cooling scenario, our approach is sensitive to the star mass and thermal conductivity of superfluid star core matter
- Discriminating test? Log N – Log S!?! (??)
It's cool to be a CompStar member!
Upcoming School and Conference ...

48th Karpacz Winter School of Theoretical Physics

Cosmic Matter in Heavy-Ion Collision Laboratories

Lądek-Zdrój, Poland. February 4-11, 2012

Lecturers
J.-P. Blaizot (Saclay):
Matter under extreme conditions
W. Florkowski (Cracow):
Ultrarelativistic heavy-ion collisions
M. Gaździcki (Frankfurt/Kielce):
Energy scan programs in HIC
P. Haensel (Warsaw):
Dense matter and compact stars
G. Martinez-Pinedo (Darmstadt):
Supernovae and the origin of heavy elements
H. Satz (Bielefeld):
Analysis of matter in QCD

Local Organizers
L. Turko (Wroclaw)
D. Blaschke (Wroclaw & Dubna)
K. Redlich (Wroclaw)
A. Wergieluk (Wroclaw)
R. Łastowiecki (Wroclaw)

Contact
karp48@ift.uni.wroc.pl
www.ift.uni.wroc.pl/~karp48

CompStar: the physics and astrophysics of compact stars
Tahiti, June 4-8, 2012

Advisory Board (preliminary)
Gergely G. Barnaföldi (Budapest)
Gordon Baym (Urbana-Champaign)
David G. Bllar (Perth)
David Blaschke (Wroclaw)
Hovig Gregorian (Yerevan)
Paweł Haensel (Warsaw)
Wick Haxton (Berkeley)
Jorge E. Horvath (Rio de Janeiro)
D. Ian Jones (Southampton)
Dubravko Klačkoč (Zagreb)
Takeshi Kodaima (Rio de Janeiro)
Evgeni Kolomeitsev (Baksinskij)
Michael Kramer (Manchester)
Yuan Liu (Beijing)
Jérôme Margueron (Orsay)
Andrew Melatos (Melbourne)
Jie Meng (Beijing)
Dong-Pil Min (Seoul)
Kazumasa Nomoto (Tokyo)
Akira Ohnishi (Kyoto)
Pierre Pizzochero (Milan)
José-Pere (Alcaide)
Constança Providência (Coimbra)
Sanjay Reddy (Seattle)
Ludovico Rezzolla (Perugia)
Robert Ruffini (Montreal)
Hiroaki Sago (Fukushima)
Bernd Jochen Schaefer (Graz)
Stuart L. Shapiro (Urbana-Champaign)
Luigi Stella (Rome)
Friedrich-Karl Tiedemann (Basele)
Anthony Thomas (Adelaide)
Hiroshi Toi (Osaka)
Joachim Trümper (Garching)
Michiel van der Klis (Amsterdam)
Stanford E. Woosley (Santa Cruz)
Renxin Xu (Beijing)

http://compstar-esf.org/tahiti

tahiti@compstar-esf.org
Thanks for Your attention!

Research ...

... is gong on!