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Starting points

Application of statistical physics to
elementary particles is usually
referred to Enrico Fermi (1950)

although it was Heinz
Koppe(1948)who proposed this idea
to production processes
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Limiting temperature

Rolf Hagedorn was the
first who systematically analyzed
high energy phenomena using all
tools of statistical physics. He
introduced the concept of the
limiting temperature ∼ 140MeV
based on the statistical bootstrap
model.

That was the origin of multiphase
structure of hadronic matter.
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Density of states
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Hagedorn spectrum fit

Done by M. Sobczak according to states in PDG2008
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Phase structure
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Statistical ensembles of high energy physics

The thermodynamic system of volume V and temperature T composed of
charged particles and their antiparticles carrying charge ±1.
The partition functions of the canonical and grand canonical statistical
system

ZC
Q (V ,T ) = TrQ e−βĤ =

∞∑
N+−N−=Q

zN−+N+

N−!N+!
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)
.

Vz0 is the sum over all one-particle partition functions
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gi – the spin degeneracy factor.
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Archive
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Thermal models calculations - in priciple
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where

µj = bjµb + sjµs + +qjµq

Supplemented by

-Van derWaals type interaction via
excluded volume correction
- Finite volume corrections
- Width of all resonances included by
integrating over BreitWigner
distributions
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Place for statistical physics

More particles (degrees of freedom) in the process: kinematics tends to
dominate the behavior of the system

We cannot solve pre-equilibrium HIC dynamics, we have no good
description of hadronization processes. . . Nevertheless, the thermal
statistical models work quite well.
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Place for statistical physics

A.Andronic,P.BraunMunzinger,J.Stachel: Phys.Lett.B673,142(2009), ActaPhys.Polon.B40,1005(2009)
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Direct variables

The chemical potential µ determines the average charge in the grand
canonical ensemble

〈Q〉 = T
∂

∂µ
lnZGC .

This allows to eliminate the chemical potential from further formulae for
the grand canonical probabilities distributions

µ

T
= arcsinh

〈Q〉
2Vz0

= ln
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√
〈Q〉2 + 4(Vz0)2
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.
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Probabilities in ensembles

To have N− negative particles in the canonical ensemble

PC
Q (N−,V ) =

(Vz0)2N−+Q

N−!(N− + Q)!

1

IQ(2Vz0)
.

To have N− negative particles in the grand canonical ensemble
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Technical details

Cleymans J., Redlich K., and Turko L. Phys. Rev. C 71 047902 (2005)
Cleymans J., Redlich K., and Turko L. J. Phys. G 31 1421 (2005)
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The thermodynamic limit

The thermodynamic limit is understood as a limit V →∞ such that
densities of the system remain constant.
The canonical ensemble

Q,N− →∞;
Q

V
= q ;

N−
V

= n−

The grand canonical ensemble.

〈Q〉,N− →∞;
〈Q〉
V

= 〈q〉 ;
N−
V

= n−

To formulate correctly the thermodynamic limit of quantities involving
densities, one defines probabilities for densities

PC
q (n−,V ) := VPC

Vq(Vn−,V ) ,

PGC
〈q〉(q,V ) := VPGC

V 〈q〉(Vq,V ) .
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Volume dependence: probabilities
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Abelian and nonabelian

Example
Perform and compare results of the statistical system: nucleons (n, p) and
pions (π±, π0) with an exact isospin SU(2) and U(1)B symmetry.

Abelian approach based on U(1)I3 × U(1)B symmetry. Abelian
canonical partition function is given as

Z(a)
B,I3

= TrB,I3 e−βH

with the trace-sum over all states with the given value I3 of the third
component of the isospin.

Nonabelian approach based SU(2)× U(1)B symmetry. Nonabelian
canonical partition function is given as

Z(na)
B,I = TrB,I e−βH

with the trace-sum over all states with the given value I of the total
isospin.
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General projective approach

A generating function is given as

Z̃(g) = Tr{U(g) e−βH} =
∑

Λ

χΛ(g)

dim(Λ)
Z

(na)
Λ

Z
(na)
Λ = TrΛ e−βH .

Then

Z
(na)
Λ = dim(Λ)

∫
dµ(g)χΛ(g)Z̃(g) .

Technical details

K. Redlich, and LT: Z. Phys. C 5 (1980) 201
LT: Phys. Lett. B 104 (1981) 153

(IFT, Wroc law) Thermal Models Hirschegg, 19/01/2012 17 / 21



SU(2) case

One can compare analytically abelian and nonabelian approach
Characters if irreducible representation are given as

χJ(γ) =
sin
(
J + 1

2

)
γ

sin γ
2

=
J∑

j3=−J
eij3γ

with the measure

dµ(γ) = sin2 γ

2
dγ =

1− cos γ

2
dγ

and the integration domain {0, 2π}.
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Projections

A generating function is given as

Z̃ = Tr{U(g) e−βH} =
∞∑
J=0

χJ(γ)

2J + 1
Z

(na)
J ; Z

(na)
J = TrJ e−βH .

So we have

Z
(na)
J =

2J + 1

π

2π∫
0

dγ χJ(γ)Z̃(γ) sin2 γ

2
.

The abelian canonical partition function

Z
(a)
j3

= Trj3 e−βH =
1

2π

2π∫
0

dγ Z̃(γ) e−ij3γ =
1

2π

2π∫
0

dγ Z̃(γ) cos j3γ .
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Projections from trigonometry

For the abelian canonical partition function Z
(a)
j3

Z
(a)
j3

= Trj3 e−βH =
1

2π

2π∫
0

dγ Z̃(γ) e−ij3γ =
1

2π
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But

χJ(γ) sin2 γ

2
=
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(
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2

)
γ
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2
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2
=

1

2
(cos Jγ − cos (J + 1)γ) .

This allows to express a nonabelian SU(2) partition function by means of
abelian partition functions

Z
(na)
J = (2J + 1)

(
Z

(a)
J − Z

(a)
J+1

)
.
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Conclusions

In the thermodynamic limit relevant probabilities are density
distributions.

Density probability distributions obtained from different statistical
ensembles have the same thermodynamical limit.

Finite volume effect more relevant for higher moments.

Canonical suppression factor for particles depends on densities.

Canonical ensembles based on the nonabelian symmetries are different
from ensembles based on the direct product of abelian subgroups.

Quantitative results are also different.

There is a hope to calculate canonical ”nonabelian” partition function
without using poorly defined oscilating integrals - also for higher
internal symmetries, beyond SU(2).

. . . work in progress.
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