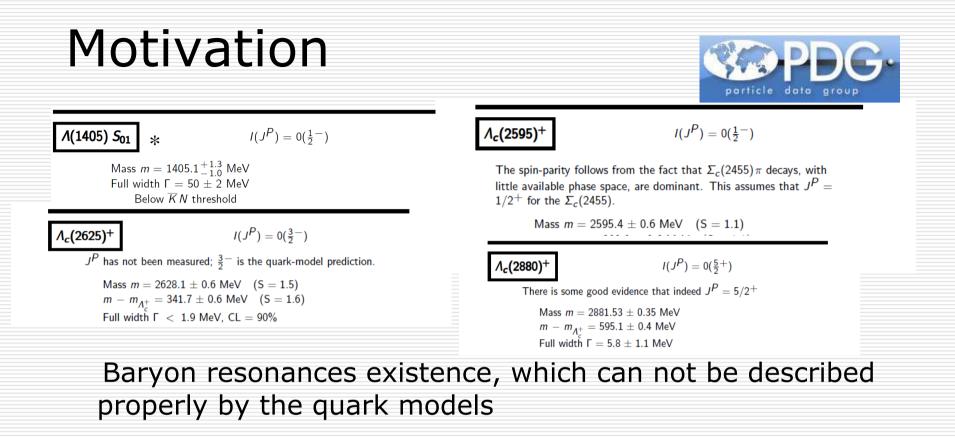
Charmed and strange baryon resonances with heavy quark symmetry

L. Tolos, R. G. E. Timmermans,

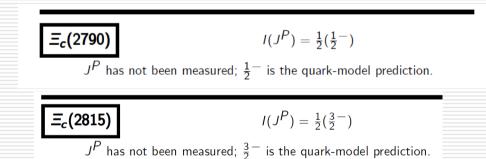
In collaboration with: J. Nieves, C. Garcia-Recio, L. L. Salcedo

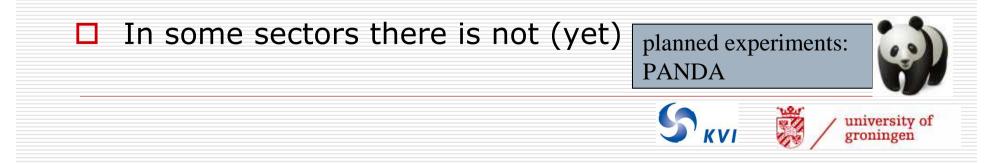

Hirschegg 2012

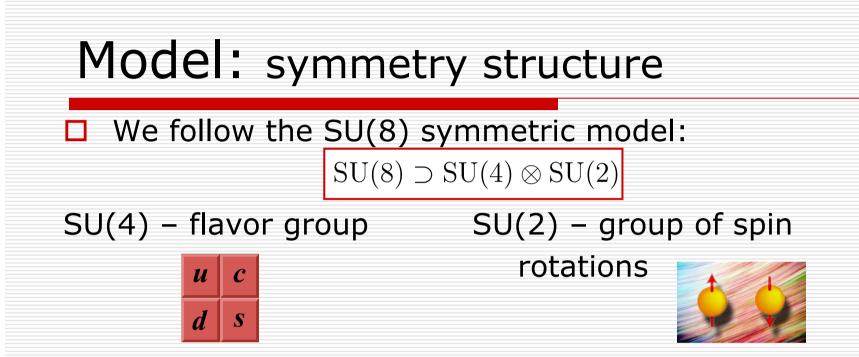
Outline:

Motivation

- Model:
 - symmetry structure [SU(8)]
 - interaction potential
 - Bethe-Salpeter equation
 - symmetry breaking
- Results
- Conclusions

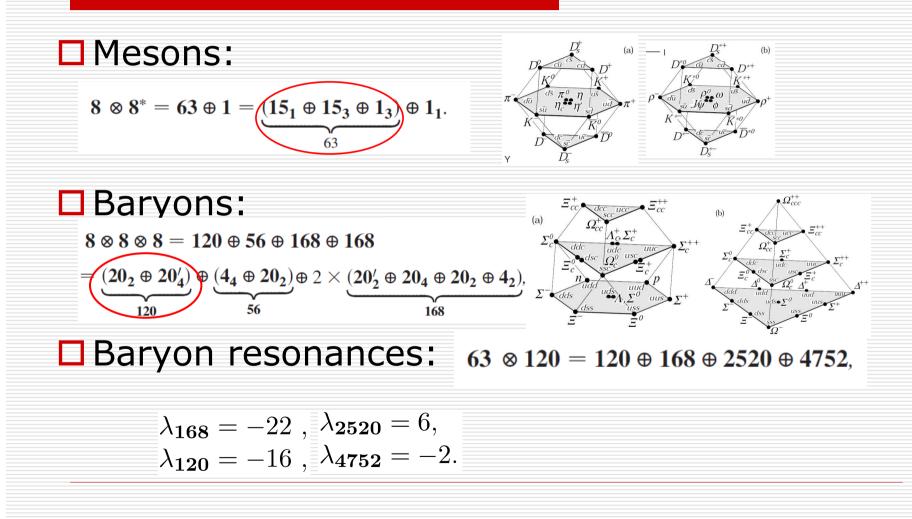

We study baryon resonances generated via meson-baryon scattering,

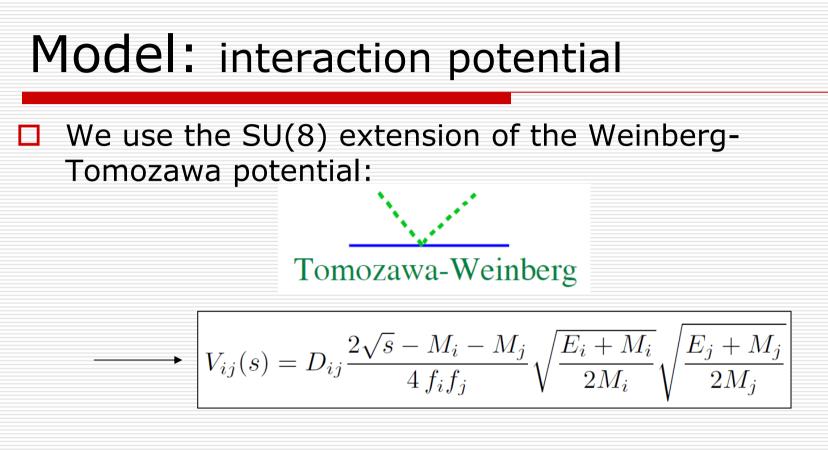

 \Box with charm and strange degrees of freedom (C=1, 2, 3)



Motivation

- Charm physics is the hot topic in hadronic experimental and theoretical physics.
- In some sectors (C S I J) there is some experimental information available.
 BaBar, Belle, CLEO


SU(8) symmetric model respects the heavy-quark symmetry of QCD in the limit of infinite quark mass.
 In this scheme the vector mesons are treated on an equal footing as the pseudo-scalar mesons; spin-1/2 and spin-3/2 baryons are included.


C. Garcia-Recio et al., Phys. Rev. D79, 054004

M – the baryons masses in the SU(8) symmetric scheme;
 E – center-of-mass energies; f – meson weak decay constants.

Model: on-shell Bethe-Salpeter equation in coupled channels:

$$T_{ij}^{IJSC}(\sqrt{s}) = \frac{1}{1 - V_{il}^{IJSC}(\sqrt{s})G_{ll}^{IJSC}(\sqrt{s})}V_{lj}^{IJSC}(\sqrt{s})$$

$$T_{ij} = V_{ij} + V_{ij}G_{j}T_{ij}$$

The transitions to other meson-baryon channels are allowed, because the strong I=1, C=0, S=-1: interaction connects states with the same quantum numbers

$$G_{ii}^{IJSC}(\sqrt{s} = \mu_i^{IJSC}) = 0 \qquad (\mu^{ISC})^2 = \alpha (m_{\rm th}^2 + M_{\rm th}^2)$$

 $\begin{bmatrix} T_{\bar{K}N\to\bar{K}N} & T_{\pi\Sigma\to\bar{K}N} & T_{\pi\Lambda\to\bar{K}N} \\ T_{\bar{K}N\to\pi\Sigma} & T_{\pi\Sigma\to\pi\Sigma} & T_{\pi\Lambda\to\pi\Sigma} \\ T_{\bar{K}N\to\pi\Lambda} & T_{\pi\Sigma\to\pi\Lambda} & T_{\pi\Lambda\to\pi\Lambda} \end{bmatrix}$

for example,

Model: symmetry breaking

□ The symmetry was broken gradually

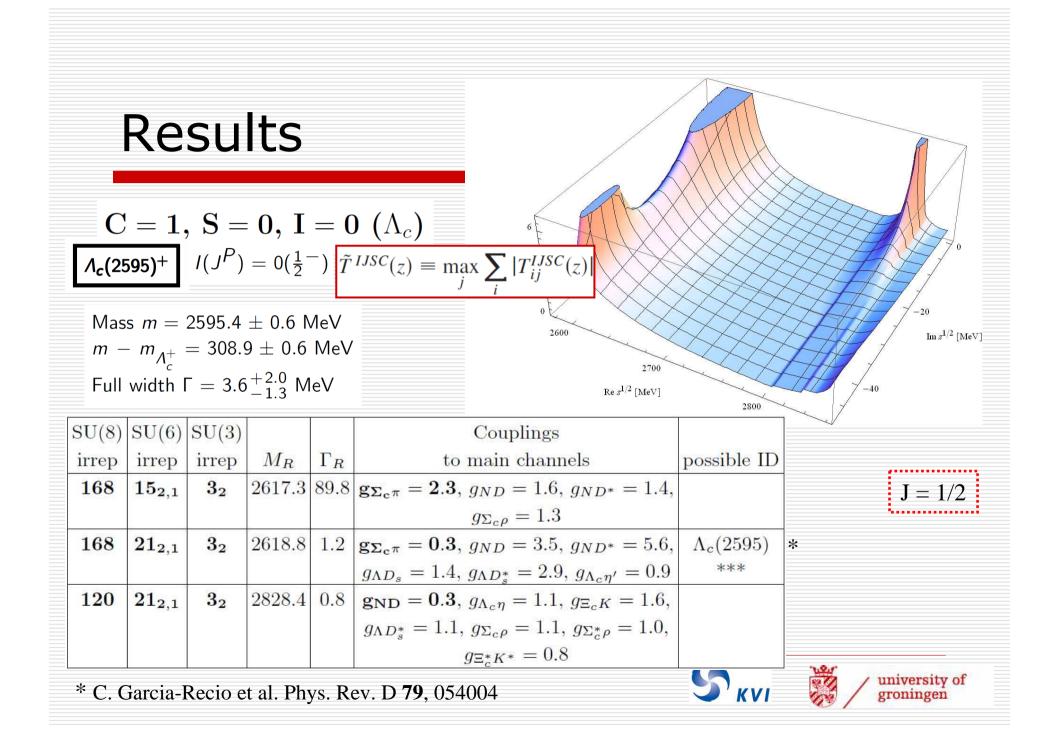
with changing the values of the meson masses and weak decay constants. In this way each found resonance was tagged with the original multiplet.

$$m(x) = (1-x)m_{\rm SU(8)} + x m_{\rm SU(6)},$$

$$f(x) = (1-x)f_{\rm SU(8)} + x f_{\rm SU(6)}.$$

$$m(x') = (1 - x')m_{\mathrm{SU}(6)} + x'm_{\mathrm{SU}(3)},$$

$$f(x') = (1 - x')f_{\mathrm{SU}(6)} + x'f_{\mathrm{SU}(3)},$$


Model

- Baryon resonances appear as poles of the scattering amplitude in the first and second Riemann sheets.
- Around a pole the scattering amplitude behaves like:

$$T_{ij}^{IJSC}(z) = \frac{g_i e^{i\phi_i} g_j e^{i\phi_j}}{(z - z_R)}$$

mass:
$$M_R = \operatorname{Re}(z_R^{1/2})$$

width: $\Gamma_R = -2\operatorname{Im}(z_R^{1/2})$

Results

$$C = 1, S = 0, I = 0 (\Lambda_c)$$

$$\boxed{\Lambda_c(2625)^+} I(J^P) = 0(\frac{3}{2}^-)$$
Mass $m = 2628.1 \pm 0.6 \text{ MeV}$ (S = 1.5)
 $m - m_{\Lambda_c^+} = 341.7 \pm 0.6 \text{ MeV}$ (S = 1.6)
Full width $\Gamma < 1.9 \text{ MeV}$, CL = 90%

SU(8)	SU(6)	SU(3)			Couplings		
irrep	irrep	irrep	M_R	Γ_R	to main channels	possible ID	J = 3/2
168	$15_{2,1}$	34	2666.6	53.7	$\mathbf{g}_{\Sigma_c^*\pi} = 2.2, \ g_{ND^*} = 2.0, \ g_{\Sigma_c\rho} = 0.8,$	$\Lambda_{c}(2625)^{+}$	J = 3/2
					$g_{\Sigma_c^*\rho} = 1.3$	***	

			ılt = -		$\tilde{z}=rac{1}{2}~(\Xi_c)$		
	SU(6)						
irrep	irrep		M_R	Γ_R	the main channels	possible ID	-60 Im $s^{1/2}$ [MeV]
168	$15_{2,1}$	62	2702.8	177.8	$\mathbf{g}_{\Xi_{\mathbf{c}}\pi} = 2.4, \ g_{\Lambda D} = 1.2, \ g_{\Sigma D} = 1.1, \ g_{\Lambda D^*} = 2.1, \ g_{\Sigma D^*} = 1.7, \ g_{\Xi D^*} = 1.1$		750
168	$21_{2,1}$	3_{2}^{*}	2699.4	126	$g_{\Lambda D^*} = 2.1, \ g_{\Sigma D^*} = 1.7, \ g_{\Xi D_s^*} = 1.1$ $g_{\Xi_c \pi} = 0.8, \ g_{\Lambda D} = 1.2, \ g_{\Sigma D} = 3.4,$		2800 -80
100	41 2,1	02	2000.4	12.0	$g_{\pm c\pi} = 0.0, g_{\Lambda D} = 1.2, g_{\Sigma D} = 0.4,$ $g_{\Lambda D^*} = 2.2, g_{\Sigma D^*} = 5.4, g_{\Xi D_s} = 1.9,$		2300
					$g_{\Xi_c \eta'} = 1.0, \ g_{\Xi D_s} = 3.3$		J = 1/2 2850
168	$21_{2,1}$	62	2733.0	2.2	$\mathbf{g}_{\Xi_{c}^{\prime}\pi} = 0.5, \ g_{\Lambda D} = 1.9, \ g_{\Sigma D} = 1.8,$		· · · · · · · · · · · · · · · · · · ·
	0.02				$g_{\Lambda D^*} = 0.9, \ g_{\Sigma D^*} = 1.2, \ g_{\Xi D_s} = 1.2,$		
					$g_{\Sigma^*D^*} = 5.8, g_{\Xi_c'\eta'} = 0.9, g_{\Xi^*D_s^*} = 3.3$		
120	$21_{2,1}$	3^{*}_{2}	2772.9	83.7			
					$g_{\Lambda D} = 2.1, \ g_{\Lambda D^*} = 1.5, \ g_{\Omega_c K} = 0.9,$		
					$g_{\Sigma D^*} = 0.9, \ g_{\Xi_c \rho} = 1.0, \ g_{\Sigma_c \bar{K}^*} = 0.9,$		
100		0*	0	0.0	$g_{\Xi_{c}^{\prime}\rho} = 1.0, g_{\Sigma^{*}D^{*}} = 1.4, g_{\Xi^{*}D_{s}^{*}} = 1.1$		
16 8	$15_{2,1}$	3^{*}_{2}	2775.4	0.6	$g_{\Xi_c\pi} = 0.1, g_{\Xi'_c\pi} = 0.1, g_{\Lambda_c\bar{K}} = 1.4,$		
					$g_{\Xi_c\eta} = 0.9, \ g_{\Lambda D^*} = 1.0, \ g_{\Sigma D^*} = 1.4,$		
120	$21_{2,1}$	62	2804.8	20.7	$g_{\Sigma_c K^*} = 1.0, \ g_{\Sigma_c^* K^*} = 1.3$ $g_{\Xi_c' \pi} = 1.1, \ g_{\Sigma_c K} = 2.4, \ g_{\Lambda D} = 1.5,$		
	2,1	02	2001.0	20.1	$g_{\Sigma D} = 1.2, \ g_{\Xi'_c \eta} = 1.3, \ g_{\Lambda_c \bar{K}^*} = 1.2,$	$\Xi_c(2790)$	
					$g_{\Sigma D^*} = 0.9, g_{\Sigma_c \bar{K}^*} = 1.8, g_{\Sigma^* D^*} = 1.1,$	***	
					$g_{\Sigma_c^* K^*} = 1.0, \ g_{\Xi^* D_s^*} = 1.2$		KVI university of

	Re	es	ult	S		J = 3/2		
	$E_c(2815)$ $E_c(2815)$ $m_{\Xi_c}(285)$ $m_{\Xi_c}(285)$ $m_{\Xi_c}(285)$	5) ⁺ mass ⁰ mass ³¹⁵⁾⁺ - ³¹⁵⁾⁰ - ³¹⁵⁾⁺ - ³¹⁵⁾⁺ - ⁺ full v	$m = 28$ $m = 28$ $m_{\Xi_c^+} =$ $m_{\Xi_c^0} =$ $m_{\Xi_c(281)}$ width $\Gamma <$	(J^{P}) 316.6 319.6 348.8 348.7 $_{(5)^{0}} =$ < 3.5	$\mathbf{I} = rac{1}{2} (\Xi_c)$ $\mathbf{J} = rac{1}{2} (rac{3}{2})$ $\pm 0.9 \text{ MeV}$ $\pm 1.2 \text{ MeV}$ $\pm 1.2 \text{ MeV}$ $\pm 1.2 \text{ MeV}$ $\pm 1.2 \text{ MeV}$ $\oplus 1.2 \text{ MeV}$ $\oplus 0.9 \text{ MeV}$, $\Xi 0.9 \text{ MeV}$ $\oplus 1.2 \text{ MeV}$ $\oplus 0.9 \text{ MeV}$, $\Xi 0.9 \text{ MeV}$ $\oplus 0.9 \text{ MeV}$, $\Xi 0.90\%$			
SU(8)	SU(8) SU(6) SU(3) Couplings						$\mathbf{J} = \mathbf{J}/\mathbf{Z}$	
	$\begin{array}{c} \text{pp} \text{irrep} \text{irrep} M_R \Gamma_R \\ \text{to main channels} \end{array}$			possible ID				
168	21 _{2,1}	64	2734.3		$g_{\Lambda D^*} = 2.2, \ g_{\Sigma D^*} = 2.1, \ g_{\Sigma^* D} = 3.6,$ $g_{\Sigma^* D^*} = 4.6, \ g_{\Xi D^*_s} = 1.3, \ g_{\Xi^* D_s} = 2.1,$ $g_{\Xi^* D^*_s} = 2.6$	-		
168	$15_{2,1}$	3*4	2819.7	32.4	$\mathbf{g}_{\Xi_{c}^{*}\pi} = 1.9, \ g_{\Sigma_{c}^{*}\bar{K}} = 2.3, \ g_{\Lambda D^{*}} = 2.0, \\ g_{\Lambda_{c}\bar{K}^{*}} = 1.0, \ g_{\Xi_{c}^{*}\eta} = 1.1, \ g_{\Sigma D^{*}} = 1.2, \\ g_{\Xi_{c}\rho} = 1.1, \ g_{\Sigma_{c}\bar{K}^{*}} = 1.0, \ g_{\Sigma_{c}^{*}\bar{K}^{*}} = 2.0 $	$\Xi_c(2815)$ ***		
120	$21_{2,1}$	64	2845.2	44.0	$\begin{aligned} \mathbf{g}_{\mathbf{\Xi}_{\mathbf{c}}^{*}\pi} &= 1.9, \ g_{\Sigma_{c}^{*}\bar{K}} = 2.1, \ g_{\Lambda D^{*}} = 2.6, \\ g_{\Lambda_{c}\bar{K}^{*}} &= 1.4, \ g_{\Xi_{c}^{*}\eta} = 1.2, \ g_{\Sigma D^{*}} = 1.2, \\ g_{\Xi_{c}\rho} &= 0.9, \ g_{\Sigma_{c}\bar{K}^{*}} = 0.9, \ g_{\Sigma_{c}^{*}\bar{K}^{*}} = 1.7, \\ g_{\Xi^{*}D_{s}} &= 0.9, \ g_{\Xi^{*}D_{s}^{*}} = 1.1 \end{aligned}$			

Conclusions:

- We have studied dynamically-generated strange and charmed resonances by solving the Bethe-Salpeter equation in coupled channels using, as bare interaction, the WT interaction and implementing heavy-quark symmetry.
- □ Some of those molecular states can be identified with resonances obtained experimentally (e.g. Λ_c(2595), Ξ_c(2790)) and some others are predictions to be tested in on-going and future experiments.

Outlook:

- Continue the analysis of our predicted resonances and comparison with the available experimental data.
- Study of the resonances coming from the 4752 representation.
- Improvement of the bare meson-baryon interaction beyond WT.
- Inclusion of medium effects to study the properties of charmed and strange mesons in dense matter.

