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Outline
 Motivation: self-consistent mean-field (SCFM) theory needs 

quantified uncertainties
 Emulators for toy model show 100x speedup over high-fidelity solver
 Emulators for UNEDF1 functional show 10x speedup, with 10 keV 

error or less
 Many future directions to pursue!
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Self-Consistent Mean Field Theory
 Nucleons feel mean-field potential generated by other nucleons

• Solve for nucleonic wavefunctions self-consistently by iterative diagonalization

 Useful for (super-)heavy nuclei
• Out of range of ab-initio models
• Nuclear structure, fission (see talk by Eric Flynn)

 Energy density functional (EDF) described phenomenologically
• Model parameters must be fit!

 Think Hartree-Fock(-Boguliubov) theory
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Uncertainty Quantification
 Theoretical predictions need 

quantified uncertainties
• Understand model sensitivities
• Extrapolate away from valley of 

stability
• Quantified inputs to nuclear 

astrophysics studies

 Want to understand in Bayesian 
framework
• Sample >106 sets of model 

parameters

 Computational challenge: how 
to reduce cost of individual 
calculations?
• Answer: emulators!

https://www.nature.com/articles/d41586-022-00711-5

https://www.nature.com/articles/d41586-022-00711-5
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Intrusive Emulators
 Examples:

• Reduced basis method, eigenvector 
continuation, etc.

• Contrast with neural networks, 
Gaussian processes

 Needs less training data
 Able to control emulation error

• Trade-off between accuracy and 
runtime

 Straightforward interpretation
 Implementation requires 

understanding the model!

Neutron skin thickness of 48Ca using reduced 
basis method. From E. Bonilla et. al., Phys. Rev. C 
106, 054322 (2022)
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A Toy Model
 A modified Gross-Pitaevskii (GP) model

• Prototypical Skyrme EDF

 How to solve the real problem?
• Guess ρin

• Expand Hamiltonian in basis {φa} (typically 
harmonic oscillator states)

• Diagonalize and compute ρout

• Repeat until ρout=ρin (a): Wavefunctions and density for 
harmonic oscillator 
(b): Same for GP
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A Toy Model
 A modified Gross-Pitaevskii (GP) model

• Prototypical Skyrme EDF

 How to solve the real problem?
• Guess ρin

• Expand Hamiltonian in basis {φa} (typically 
harmonic oscillator states)

• Diagonalize and compute ρout

• Repeat until ρout=ρin

 Non-affine parameter dependence!
(a): Wavefunctions and density for 
harmonic oscillator 
(b): Same for GP
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A Toy Model
 Bottleneck is transforming to basis, 

so emulate the field

• Called “empirical interpolation” (EI)
• Precompute integrals 

 Fields are qualitatively similar
• Take singular value decomposition to 

find fi(x) 
• Decay of singular values tells us how 

many fi(x) we need

 Determine coefficients by 
constructing field at specific x 
values

Top: sample fields
Bottom: singular values from SVD of fields
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Principal Components
 Principal components are interpretable

• First component is overall shape
• Additional components are corrections
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A Toy Model: Results
 Compare to original solver by 

plotting accuracy vs runtime
• Ground truth is solver with very 

high tolerance

 Approximately 100x speedup 
with minimal accuracy loss!

 Further speedups available:
• Emulating wavefunctions adds an 

additional factor speedup, due to 
diagonalizing smaller Hamiltonian

• Rewriting problem to use a 
gradient-based root finding method 
can give additional speedup*
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Skyrme HFB
 Skyrme form of EDF used widely in 

realistic calculations
• Use EDF parameters samples from 

posterior of UNEDF1 calibration (J. D. 
McDonnell et. al., Phys. Rev. Lett. 114, 
122501 (2015))

• 12-dimensional parameter space
• Consider ground state of 254Fm
• Enforce axial, time-reversal symmetry 

(no parity!) using HFBTHO
● 25 oscillator shells

 Want to use empirical interpolation 
on the fields
• SVD suggests that empirical interpolation 

should work

Proton (neutron) shown in solid 
(dashed) lines
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Skyrme HFB
 Can other steps be emulated?

• Hard to emulate individual wave 
functions, due to level crossings

● Instead can emulate all wave 
functions at once

• Computing expansion coefficients 
requires reconstructing fields on 
entire mesh grid

● Due to Coulomb potential
● Can truncate grid with negligible 

accuracy cost
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Skyrme HFB
 Can other steps be emulated?

• Hard to emulate individual 
wavefunctions, due to level 
crossings

● Instead can emulate all 
wavefunctions at once

• Computing expansion coefficients 
requires reconstructing fields on 
entire mesh grid

● Due to Coulomb potential
● Can truncate grid with negligible 

accuracy cost

 Python emulator is 10x faster 
than Fortran code HFBTHO
• Fortran emulator likely faster
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Takeaways
 Basis expansion codes amenable to empirical interpolation
 SVD useful diagnostic tool for emulator development
 Rephrasing the problem in a novel way can (sometimes) help
 Intrusive emulators are worth exploring!
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Future Directions
 Evaluate performance on fission isomer and constrained HFB 

calculations
• Hope to enable UQ for fission yields (see Eric’s talk)

 Incorporate emulator into high-fidelity solver
• Use empirical interpolation when solver nears convergence

 Explore use in calculations across the nuclear chart
• Use basis from one nucleus to study another

 Interest in generalizations
• Nonlinear embedding (replace PCA to find basis)
• Similar techniques for coordinate-space solvers?
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Questions?
 Thanks to collaborators!

• Pablo Giuliani
• Kyle Godbey
• Witek Nazarewicz
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Principal Components
 Principal components are interpretable

• First component is overall shape
• Additional components are corrections
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