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Nuclear pasta recipe: angel hair with carrots

Ingredients:
1 box Barilla Angel Hair
6 tbs. extra-virgin olive oil, divided
2 carrots, peeled and diced into small
pieces
2 red bell peppers, diced into small pieces
1/2 cup Romano cheese
Salt and black pepper, to taste

Italian Chef Lorenzo Boni c⃝ 2019 Copyright Live Naturally

Ingredients for the Garnish:
A few pieces of cooked Barilla Collezione
Orecchiette
2 tbs. Barilla Pastina, cooked and drained

Directions:
1 Turn on the oven and set to 230 ◦C.
2 Season the carrots and peppers separately with 2 tbs. of olive oil, salt, pepper.
3 Place the seasoned vegetables on a sheet pan and roast in the oven ∼ 20’.
4 Cook pasta according to the package directions and then drain and toss with

remaining olive oil and cheese.
5 Garnish with vegetables before serving.

Credit Recipe: Barilla executive Chef Lorenzo Boni
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Neutron stars
Neutron stars are not “stars”: they are the extremely compact
remnants of gravitational core-collapse supernova explosions.

Nuclear physics:

M ∼ 1 − 2M⊙
R ∼ 10 km
⇒ ρ ∼ 1015 g cm−3

Energy scale: MeV

“cold” ≲ 1010 K ≲ “hot”

Neutron stars are initially very hot (∼ 1012 K) but cool down to
∼ 109 K within days by releasing neutrinos:

cold “catalyzed” matter hypothesis
matter in full thermodynamic equilibrium (ground state)
Harrison, Wakano and Wheeler, Onzième Conseil de Physique Solvay (Stoops,
Brussels, Belgium, 1958) pp 124-146
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Neutron-star interior

picture taken from Haensel, Potekhin, Yakovlev, “Neutron Stars” (Springer, 2007)

Despite their name, neutron stars are not only made of neutrons!
Blaschke&Chamel, Astrophys. Space Sci. Lib. 457, eds L. Rezzolla, P. Pizzochero, D.
I. Jones, N. Rea, I. Vidaña p. 337-400 (Springer, 2018), arXiv:1803.01836
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Neutron-star surface
The surface of a neutron star is expected to be made of iron
(identification of broad Fe K emission lines from accretion disk around
neutron stars in low-mass X-ray binaries).

Stixrude, Phys.Rev.Lett. 108, 055505 (2012)

Compressed iron can be studied
with nuclear explosions and
laser-driven shock-wave
experiments...

But at pressures corresponding to
about 0.10.10.1 mm below the surface
(for a star with a mass of 1.4M⊙
and a radius of 12 km)!

Ab initio calculations predict various structural phase transitions:
iron is expected to have a body-centered cubic (bcc) crystal lattice
structure at high pressures.
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https://doi.org/10.1103/PhysRevLett.108.055505


Crystal Coulomb plasma
At a density ρeip ≈ 2 × 104 g cm−3 (about 22 cm below the surface),
the interatomic spacing becomes comparable with the atomic radius.

Ruderman, Scientific American 224, 24 (1971)

At densities ρ≫ ρeip, atoms are crushed into a dense bcc crystal
Coulomb plasma of nuclei and free electrons.
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Description of the outer crust of a neutron star
Traditional approach: numerical minimization of the Gibbs free
energy per nucleon at different pressures P
Tondeur, A&A 14, 451 (1971); Baym, Pethick, Sutherland, ApJ 170, 299 (1971)

layers can be easily missed if δP not small enough!
numerically costly (BPS considered 130 even nuclei vs ∼ 104)

New approach: iterative minimization of the pressures between
adjacent crustal layers (approximate analytical formulas)
Chamel, Phys. Rev. C 101, 032801(R) (2020)
computer code: http://doi.org/10.5281/zenodo.3719439

very accurate and reliable (δP/P ∼ 10−3 %)
composition and stratification (depths, abundances)
∼ 106 times faster

Nuclear-physics inputs:
masses of atomic nuclei
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Gravitational stratification and matter neutronization
The crust is stratified into pure layers composed of nuclei (Z ,A). The
pressure P is mainly determined by the relativistic electron Fermi gas.

At the interface, P ≈ Pe(ne) therefore ne must be continuous.

Electric charge neutrality, ne =
Z1

A1
n̄1 =

Z2

A2
n̄2.

Hydrostatic equilibrium n̄2 > n̄1 ⇒ Z2/A2 < Z1/A1.
µ1→2

e > 0 ⇒ M(A2,Z2)/A2 > M(A1,Z1)/A1.
Chamel&Fantina,Phys.Rev.C 94, 065802 (2016)

With increasing depth, nuclei become more neutron rich until
neutrons “drip” out marking the transition to the inner crust, where
nuclei coexist with free neutrons and electrons.
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Experimentally determined layers
The composition is completely determined by experimental data
down to ∼ 200m for a 1.4M⊙ neutron star with a radius R = 10 km.

Importance of nuclei with
nearly magic N.

Due to β equilibrium and
electric charge neutrality, Z
is more tightly constrained.

Few layers with Z = 28.

Kreim et al., Int.J.M.Spec.349-350,63(2013)

In 1971, the crust was experimentally known down to the layer of 84Se
at density 8 × 109 g/cm−3. Nowadays, the limit is at 6 × 1010 g/cm−3.
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https://doi.org/10.1080/10619127.2013.793089


Plumbing neutron stars to new depths

Precision mass measurements of
82Zn by the ISOLTRAP
collaboration at CERN allowed to
reach the layer of 80Zn in 2013.

Nuclei in the layers beneath must
be such that Z/A < 0.375 and
M(A,Z )/A > 930.848 MeV.

This rules out the doubly magic
48Ca, 48Ni, and 56Ni but not 78Ni.

Errors of a few keV on masses can
change the composition.
Pastore et al.,PRC101,035804(2020)

Wolf et al.,Phys.Rev.Lett.110,041101(2013)

Precision mass measurements of nuclei Z ∼ 40, N ∼ 82 needed!
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https://doi.org/10.1103/PhysRevC.101.035804
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.041101


Stratigraphic column of the outer crust
To drill deeper, nuclear mass models must be used:

semi-empirical (e.g. Bethe & Weizsäcker)
mic-mac (e.g. Duflo & Zucker, FRDM)
“microscopic” (e.g. HFB, RMF)

Lunney et al., Rev. Mod. Phys.75, 1021 (2003)

Example shown of the left:
Pearson et al., MNRAS 481, 2994 (2018)

Freely available computer code:
http://doi.org/10.5281/zenodo.3719439

Refined mass models using machine learning:
Utama et al., Phys.Rev.C93,014311(2016)
Shelley&Pastore, Universe 7, 131 (2021)

However, such models cannot be used to describe
the inner crust and core.
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https://doi.org/10.1103/RevModPhys.75.1021
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Neutron-drip transition: general considerations

With increasing pressure, nuclei become unstable against neutron
emission induced by electron captures

A
Z X +∆Ze− →A−∆N

Z−∆Z Y +∆N n +∆Z νe

Nuclei are stable against neutron emission alone (∆Z = 0,∆N ≥ 1)!

outer crust drip line ρdrip (g cm−3) Pdrip (dyn cm−2)

HFB-19 126Sr (0.73) 121Sr (-0.62) 4.40 × 1011 7.91 × 1029

HFB-20 126Sr (0.48) 121Sr (-0.71) 4.39 × 1011 7.89 × 1029

HFB-21 124Sr (0.83) 121Sr (-0.33) 4.30 × 1011 7.84 × 1029

The numbers in parentheses are the neutron separation energies
Sn(A,Z ) ≡ M(A − 1,Z )c2 − M(A,Z )c2 + mnc2 in MeV.

ρdrip and Pdrip can be expressed by simple analytical formulas.
Chamel et al., Phys. Rev. C91, 055803 (2015)
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Nuclei in dense stellar environments
In 1971, Baym, Bethe, and Pethick described nuclei in the inner crust
of a neutron star as nuclear liquid drops in a uniform neutron gas.

By translational symmetry, it is enough to consider a single
Wigner-Seitz cell approximated by a sphere.

Such models are computationally very fast and still widely employed.

In principle, bulk and surface energies can be calculated from more
microscopic models, but empirical parametrizations are often used.
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Nuclei in dense stellar environments
Baym, Bethe and Pethick showed that the existence of nuclei arises
from a detailed balance between surface and Coulomb effects:

Esurf = 2ECoul

With increasing depth,
the surface energy decreases due to free neutrons,
whereas the Coulomb energy increases due to compression.

They anticipated that nuclei would become unstable at some point:

Baym, Bethe, Pethick, Nucl. Phys. A175, 225 (1971)
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https://doi.org/10.1016/0375-9474(71)90281-8


Nuclei in neutron-star crust vs ordinary nuclei
Solving the HF equations in spherical Wigner-Seitz cells in 1973,
Negele&Vautherin found that both types of nuclei look similar:

Negele&Vautherin,Nucl.Phys.A207,298(1973)

But they were not able to probe the existence of nuclear bubbles
because of numerical instabilities.
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https://doi.org/10.1016/0375-9474(73)90349-7


Band theory of solids
The exact Wigner-Seitz cell is not a sphere but a truncated
octahedron for a bcc lattice.
The boundary conditions are dictated by the crystal symmetry.

Floquet-Bloch theorem:
φαkkk (rrr + ℓℓℓ) = ei kkk·ℓℓℓφαkkk (rrr)

for any lattice translation vector ℓℓℓ.

Quantum numbers:
α (discrete): rotational symmetry
kkk : translational symmetry.

Really a full 3D problem!

The free neutron energy levels consist of bands analogously to free
electrons in metals.
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Neutron band structure
Unbound neutron energy levels of zirconium isotopes with N = 160
(70 unbound) in a body-centered cubic lattice at n̄ = 4 × 10−4 fm−3:

W-S approximation band theory of solids
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Chamel et al, Phys.Rev.C75, 055806 (2007)

The W-S approach is unreliable beyond ∼ 0.02 fm−3 due to spurious
shell effects induced by approximate boundary conditions.
Chamel et al, PRC75, 055806 (2007); Pastore et al, J.Phys.G44,094003 (2017)
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.75.055806
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“Percolating network of linked nuclei”
In 1982, Ogasawara and Sato speculated that nuclei may globally
connnect by analogy with percolation networks:

Ogasawara&Sato, Prog. Theor. Phys. 68, 222 (1982)
19
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Instability of spherical nuclei in the deep crust
In dense matter, the surface energy of a nucleus is reduced

Esurf = 2ECoul ≈ 2E0
Coul

(
1 − 3

2
rN

rc

)
Applying the Bohr-Wheeler
instability criterion E0

Coul ≥ 2Esurf
Bohr&Wheeler, Phys.Rev.56,426(1939)
Brandt, Master’s thesis (1985)

Pethick&Ravenhall showed that
spherical nuclei in the crust
become unstable when

u = (rN/rc)
3 ≥ 1/8 = 0.125

Pethick&Ravenhall, ARNPS45,429(1995)

However, the instability is suppressed by the neglected electrons
Zemlyakov&Chugunov,Particles 5(3), 225(2022)
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Nuclear “pasta”: first predictions
Nuclear “pasta” were first studied based on liquid-drop models.
Ravenhall et al., PRL50, 2066 (1983);Hashimoto et al., PTP71, 320 (1984)
Oyamatsu et al., PTP 72, 373 (1984)

With increasing filling fraction (u ≳ 0.2): gnocchi (S), spaghetti (C),
lasagna (B), bucatini (CH), and Swiss cheese/emmental (SH).

However, the existence of nuclear pasta can be altered by various
corrections (e.g., neutron skin, curvature, etc).
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Nuclear pasta in neutron stars
According to recent liquid-drop calculations, pasta could represent
about 50% of the mass of neutron-star crust.
e.g. Newton et al. EpJA58, 69 (2022); Dinh Thi et al., A&A 654, A114 (2021)

W. G. Newton, Nature Phys. 9, 396 (2013)

pasta could have implications for magnetothermal and dynamical
evolutions of neutron stars, as well as gravitational-wave emission.
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Formation of nuclear pasta
The formation of nuclear pasta has been explored using large scale
molecular dynamics in a box with periodic boundary conditions:

classical molecular dynamics (N ∼ 103 − 105)
pointlike particles interacting through a two-body potential
Berry et al., PRC94,055801(2016); Dorso et al., PRC86,055805(2012)

“quantum” molecular dynamics (N ∼ 103)
Gaussian wave packets moving (classically) in a mean field.
Phenomenological antisymmetrisation (Pauli potential).
Maruyama et al., Prog.Theor.Exp.Phys. 2012,01A201(2012)

fermionic molecular dynamics (very costly, scale as N4 vs N2)
Slater determinants. Few attempts so far.
Vantournhout et al.,Prog.Part.Nucl.Phys.66,271(2011); Vantournhout&Feldmeier,
J.Phys.Conf.Ser.342,012011(2012)

Results could be influenced by the geometry of the box and the
treatment of Coulomb interactions.
Giménez Molinelli&Dorso,NPA933,306 (2015); Alcain et al., PRC89,055801(2014)
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Models of nuclear pasta
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pasta have been mostly studied within
liquid-drop models,
(semi)classical models.

Reviews:
Chamel&Haensel, Liv.Rev.Relativ.11, 10 (2008)
Kaplan&Horowitz,Rev.Mod.Phys.89,041002(2017)
Blaschke&Chamel, Astrophys. Space Sci. Lib. 457,
eds L. Rezzolla, P. Pizzochero, D. I. Jones, N. Rea,
I. Vidaña p. 337-400 (Springer, 2018)
arXiv:1803.01836

Xia et al,PRC103,055812(2021)

To which extent do shell effects (magic numbers) and pairing impact
the existence of nuclear pasta?

This question can be addressed within the self-consistent nuclear
energy-density functional theory.
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Nuclear energy-density functional theory

Many-body problem reduced to an effective one-body problem.
This goes beyond the mean-field approximation.

In practice, one must solve the coupled Hartree-Fock-Bogoliubov
(HFB) equations for both neutrons and protons (q = n,p):∑
σ′

(
h′

q(rrr)σσ′ ∆q(rrr)δσσ′

∆q(rrr)∗δσσ′ −σσ′h′
q(rrr)∗−σ−σ′

)(
ψ
(q)
1 (rrr , σ′)

ψ
(q)
2 (rrr , σ′)

)
= E(q)

(
ψ
(q)
1 (rrr , σ)

ψ
(q)
2 (rrr , σ)

)

h′
q(rrr)σ′σ ≡

[
−∇∇∇· δE

δτq(rrr)
∇∇∇+

δE
δnq(rrr)

−λq

]
δσσ′ − i

δE
δJqJqJq(rrr)

·∇∇∇× σ̂̂σ̂σσ′σ + . . .

nq(rrr), τq(rrr), JqJqJq(rrr),∆q(rrr) . . . are defined from the density matrices

nq(rrr , σ; r ′r ′r ′, σ′) = ⟨Ψ|cq(r ′r ′r ′, σ′)†cq(rrr , σ)|Ψ⟩
ñq(rrr , σ; r ′r ′r ′, σ′) = −σ′⟨Ψ|cq(r ′r ′r ′,−σ′)cq(rrr , σ)|Ψ⟩,

which in turn depend on ψ(q)
1 (rrr , σ) and ψ(q)

2 (rrr , σ): self-consistency.

N. Schunck (ed.), EDF Methods for Atomic Nuclei (IOP Publishing, Bristol, 2019)
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Description of the inner crust of a neutron star
3D HFB calculations are computationally very costly. HF(+BCS)
calculations for a few selected densities and proton fractions:
Schuetrumpf & Nazarewicz, PRC92, 045806 (2015); Schuetrumpf et al., PRC100,
045806 (2019); Newton et al., PRC105, 025806 (2022)

Intead, we use the Extended Thomas-Fermi (ETF)+Strutinsky
Integral (SI) method:

semiclassical expansion up to ℏ4: the energy E becomes a
functional of nq(rrr) and their derivatives only.
shell effects and pairing are added consistently.
different shapes are allowed: spheres, cylinders, slabs.
to speed-up the computations, nq(rrr) are parametrized.

Pearson&Chamel, PRC101,015802(2020); PRC105,015803(2022)

The ETFSI method is a fairly accurate and computationally very
fast approximation to the full HFB equations
Shelley&Pastore, Universe 6, 206 (2020)
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Nuclear energy-density functionals
Many functionals are available, but most of them were fitted to a few
(doubly magic) nuclei and are not suitable for neutron stars.

Brussels functionals are based on extended Skyrme and pairing
effective interactions. All were accurately calibrated to a large set of
experimental data:

https://www-nds.iaea.org

∼ 2300 atomic masses from the Atomic Mass Evaluation
∼ 900 nuclear charge radii
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Skyrme effective nucleon-nucleon interactions
Most functionals are constructed from Skyrme effective contact
interactions in the “mean-field” approximation:

vij = t0(1 + x0Pσ)δ(rrr ij)︸ ︷︷ ︸
“long-range” attractive

+
1
6

t3(1 + x3Pσ)n(rrr)α δ(rrr ij)︸ ︷︷ ︸
“short-range” repulsive

+
1
2

t1(1 + x1Pσ)
1
ℏ2

[
p2

ij δ(rrr ij) + δ(rrr ij)p2
ij
]
+ t2(1 + x2Pσ)

1
ℏ2 pppij .δ(rrr ij)pppij︸ ︷︷ ︸

“intermediate-range”

+
i
ℏ2 W0(σiσiσi + σjσjσj) · pppij × δ(rrr ij)pppij︸ ︷︷ ︸

spin-orbit

+
1
2
(1 + Pσ)vπ(rrr)δ(rrr ij)︸ ︷︷ ︸

pairing

rrr ij = rrr i − rrr j , rrr = (rrr i + rrr j)/2, pppij = −iℏ(∇∇∇i −∇∇∇j)/2 is the relative
momentum, and Pσ is the two-body spin-exchange operator.

The 10 parameters t0, x0...,W0 (plus pairing part) must be fitted to
some nuclear data.
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Climbing the Jacob’s ladder
▷ removal of spurious spin-isospin instabilities (BSk18)

vij → vij +
1
2

t4(1 + x4Pσ)
1
ℏ2

{
p2

ij n(rrr)β δ(rrr ij) + δ(rrr ij)n(rrr)β p2
ij
}

+t5(1 + x5Pσ)
1
ℏ2 pppij · n(rrr)γ δ(rrr ij)pppij

Chamel, Goriely, Pearson, PRC80,065804(2009); PRC82, 045804 (2010)
▷ fit to realistic neutron-matter equations of state (BSk19-21)

Goriely, Chamel, Pearson, Phys.Rev.C 82, 035804 (2010)
▷ fit to different symmetry energies (BSk22-26)

Goriely, Chamel, Pearson, Phys.Rev.C 88, 024308 (2013)
▷ generalized spin-orbit coupling (BSk29)

Eso =
1
2

[
JJJ · ∇∇∇n + (1 + yw )

∑
q

JqJqJq · ∇∇∇nq

]
Goriely, Nucl.Phys.A933, 68 (2015)

▷ fit to realistic 1S0 pairing gaps (BSk30-32)
Chamel et al.,Nucl.Phys.A812, 72(2008); Chamel, Phys.Rev.C82, 014313(2010)
Goriely, Chamel, Pearson, Phys.Rev.C93, 034337(2016)

▷ new family using a full 3D HFB code (BSkG1-3)
Grams et al., EPJ A59, 270 (2023)
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BSk19-21: neutron-matter constraint
BSk19-21 were simultaneously fitted to three realistic neutron-matter
equations of state with different degrees of stiffness:

Goriely, Chamel, Pearson, Phys.Rev.C 82, 035804 (2010)
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BSk22-26: symmetry-energy constraints
BSk22-26 were further adjusted to different values of J = S(n0).

BSk22 BSk23 BSk24 BSk25 BSk26
av [MeV] -16.088 -16.068 -16.048 -16.032 -16.064
n0 [fm−3] 0.1578 0.1578 0.1578 0.1587 0.1589
J [MeV] 32.0 31.0 30.0 29.0 30.0
L [MeV] 68.5 57.8 46.4 36.9 37.5

Ksym [MeV] 13.0 -11.3 -37.6 -28.5 -135.6
Kv [MeV] 245.9 245.7 245.5 236.0 240.8
K ′ [MeV] 275.5 275.0 274.5 316.5 282.9
M∗

s /M 0.80 0.80 0.80 0.80 0.80
M∗

v /M 0.71 0.71 0.71 0.74 0.65
NeuM BHF BHF BHF BHF APR

Lower and higher values of J were considered but yielded
substantially worse fits to atomic masses.

BHF: ’V18’ from Li & Schulze, PRC 78, 028801 (2008)
APR: ’A18 + δv + UIX∗’ from Akmal et al., PRC 58, 1804 (1998)
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BSk22-26: symmetry-energy constraints
The symmetry energy S(n) at lower densities is consistent with
various experimental constraints:
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Symmetry energy at higher densities
BSk22-26 mainly differ in their predictions for the symmetry energy at
densities encountered in the core of neutron stars:
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BSk vs chiral EFT
BSk22-26 are in fairly good agreement with recent calculations based
on chiral effective-field theory at N3LO from Drischler et al. (2020):
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BSk22-26 were NOT fitted to these chiral EFT calculations.
34

https://doi.org/10.1103/PhysRevLett.125.202702


Proton shell effects in stellar environments
The ordinary nuclear shell structure is altered in dense matter:
Z = 28,82 disappear, while 40,58,92 appear (quenched spin-orbit).

Energy per nucleon obtained with BSk24 for spherical nuclei:
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Pearson et al., MNRAS 481, 2994 (2018)
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Composition of the inner crust: spherical nuclei

The composition is strongly influenced by the symmetry energy
(the lower S(n̄), the lower Z ) but also by proton shell effects.
The crust dissolves at ∼ 0.08 fm−3.
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Classical recipe of nuclear pasta (ETF)
Pasta phases are more likely to appear for models with higher values
of the symmetry energy at the relevant densities (BSk22 vs BSk25):
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Quantum recipe of nuclear pasta (ETFSI)
Pasta phases occupy a much narrower range of densities, and
correlations with symmetry energy vanish:
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Nuclear pasta abundances in neutron stars
The pasta mantle shrinks dramatically with shell effects!
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Role of the nucleon density parametrization

At very high densities, results are sensitive to the choice of the
parametrization of nq(ξ) in the Wigner-Seitz cell of “radius” R.

Writing the nucleon density as nq(ξ) = nBq + nΛq fq(ξ),

the popular ansatz (nBq , nΛq , Cq , aq are free parameters)

f FD
q (ξ) =

1

1 + exp
(

ξ−Cq
aq

)
does not satisfy the boundary condition

dnq

dξ
(ξ = R) = 0.

our new ansatz is

f SoftD
q (ξ) =

1

1 +
(

Cq−R
Cq

)2 (
ξ

ξ−R

)2
exp

(
ξ−Cq

aq

)
satisfies

dnq

dξ
(ξ = 0) =

dnq

dξ
(ξ = R) = 0.

We also consider

f 3FD
q (ξ) = f FD

q (−ξ) + f FD
q (ξ) + f FD

q (2R − ξ)− f FD
q (−R)− 2f FD

q (R)
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Role of the nucleon density parametrization

At very high densities, results are sensitive to the choice of the
parametrization of nq(ξ) in the Wigner-Seitz cell of “radius” R.

Writing the nucleon density as nq(ξ) = nBq + nΛq fq(ξ),

the ansatz we adopted since 2008

f StrD
q (ξ) =

1

1 + exp

[(
Cq−R
ξ−R

)2
− 1
]
exp

(
ξ−Cq

aq

)
does satisfy

dnq

dξ
(ξ = R) = 0 but all derivatives actually vanish.

Onsi et al., Phys.Rev.C77,065805 (2008)
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Role of the nucleon density parametrization

All parametrizations agree up to the point where pasta first
appear at n̄ ≈ 0.07 fm−3.
The two new parametrizations yield more stable configurations
(lower energies).
Both predict the existence of gnocchi among pasta.
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Summary and challenges
Liquid-drop and semiclassical models predict a large amount of
pasta in neutron stars (up to 50% of the crust mass).
Pasta could impact the evolution of neutron stars (e.g. cooling).
But pasta are suppressed by quantum shell effects.

Full 3D HFB calculations: new pasta shapes? role of pairing?

Preliminary results from Nikolai Shchechilin (ULB)

Cooking of nuclear pasta from the birth of neutron stars: how do
they crystallize? glass? can the ground state be reached?
Role of accretion? Reheating of pasta? Magnetic fields?
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