

KATRIN experiment - recent results and future prospects

September 16-22, 2022 – Erice, Sicily

Alexey Lokhov for the KATRIN collaboration

www.kit.edu

Karlsruher Institut für Technologie

Outline

- Neutrino mass measurements
- KATRIN experiment
- First neutrino mass results of KATRIN
- "Beyond neutrino mass" with KATRIN
- Summary and outlook

Three ways to assess the absolute neutrino mass scale

1) Cosmology

- very sensitive: era of precision cosmology
- compares power at different scales
- current sensitivity: $\Sigma m(v_i) \approx 0.12 \text{ eV}$

(Planck, DES)

2) Search for $0\nu\beta\beta$

- Sensitive to Majorana neutrinos, modeldependent, LNV
- Upper limits by CUORE, EXO-200, GERDA, KamLAND-Zen:

 $m_{_{\beta\beta}}$ < 0.1-0.4 eV

3) Direct neutrino mass determination

- No further assumptions needed, use $E^2 = p^2c^2 + m^2c^4$ $\Rightarrow m^2(v)$
- Time-of-flight measurements (v from supernova)
- Kinematics of weak decays / beta decays, e.g. T, ¹⁶³Ho

Tritium β -decay

• continuous β -spectrum described by Fermi's Golden Rule, measurement of effective mass m(v_e) based on kinematic parameters & energy conservation

Tritium β -decay

The KATRIN experiment at Karlsruhe Institute of Technology

6 Full system description & commissioning, <u>JINST 16 (2021) T08015</u>

MAC-E-Filter: high-resolution β-spectroscopy

Magnetic Adiabatic Collimation & Electrostatic Filter:

Momentum tranfsormation without the E-field

Beta-spectrum and neutrino mass

KATRIN Data taking

Recent v-mass results

First campaign (spring 2019):

✓ total statistics: 2 million events
 ✓ best fit: $m_{\nu}^2 = \left(-1.0^{+0.9}_{-1.1}\right) \text{ eV}^2$ (stat. dom.)
 ✓ limit: $m_{\nu} < 1.1 \text{ eV}$ (90% CL)

Second campaign (autumn 2019):

- ✓ total statistics: 4.3 million events
- ✓ best fit: $m_{\nu}^2 = (0.26^{+0.34}_{-0.34}) \text{ eV}^2$ (stat. dom.) ✓ limit: $m_{\nu} < 0.9 \text{ eV}$ (90% CL)

Combined result: $m_{ m u} < 0.8$ eV (90% CL)

KATRIN Collab, Nature Phys. 18 (2022) 160

Improving statistics and systematics

Background reduction

- Volume dependent background rate
- Reduce the volume of the flux
- \Rightarrow "shifted analyzing plane" (SAP) \blacksquare
- factor 2 signal/background improvement I
- Further reduction of background planned

- Co-circulation of tritium and ^{83m}Kr at 80 K
- Estimating plasma conditions in the source

Implemented since 2020!

Light sterile neutrinos – Motivation

- Multiple anomalies in the oscillation data
 - reactor flux anomaly
 - reactor spectra
 - gallium anomaly
 - LSND, MiniBooNE
- No universal explanation to all of them
- An oscillation-free measurement as an independent cross-check by KATRIN

Sterile neutrinos signature in β -spectrum

- 3+1 sterile neutrino model
- Same data-set as for the neutrino mass
- Grid search in m_4^2 , $|U_{e4}|^2$ plane

$$\frac{d\Gamma}{dE} = (1 - |U_{e4}|^2) \frac{d\Gamma}{dE} (m_{\beta}^2) + |U_{e4}|^2 \frac{d\Gamma}{dE} (m_{4}^2)$$

$$\lim_{k \to \infty} \lim_{k \to \infty}$$

Sterile neutrinos – complimentarity

- looking at the short baseline anomalies from a different perspective
- Signal-to-background up to 250
- More stringent limits than Troitsk and Mainz
- approaching the BEST allowed regions with Δm² > 10 eV²
- complementary probe to oscillation-based experiments

KATRIN search for keV sterile neutrinos

KATRIN search for keV sterile neutrinos

Holzschuh 99

16

18

14

present lab limits

- **TRISTAN project in KATRIN:**
 - novel multi-pixel Silicon Drift Detector array
 - large count rates
 - excellent energy resolution
 - Prototypes installed as monitoring devices @ KATRIN
 - Target sensitivity: $\sin^2 \theta < 10^{-6}$

 10^{-1}

2018 data

Detector pixel

3 mm

Cosmic neutrino background

- ~340 relic neutrinos of all species /cm³ in the Universe (56 /cm³ per species)
- Decoupled the first second (1 MeV) after Big Bang
- Predicted overdensity $\eta \approx (1.2..20)$
- upper limits from previous kinematic neutrino mass measurements: 1013

Relic neutrinos search with KATRIN

- relic neutrinos with meV energies
- neutrino capture on tritium (no energy threshold)
- Peak above the endpoint

$$^{3}\text{H} + \nu_{e} \rightarrow ^{3}\text{He}^{+} + e$$

Relic neutrinos search with KATRIN

up to 40 g of tritium

30 μ g of T₂ in the source 10⁻⁶ captures per year

KATRIN has the sensitivity to probe large clustering of cosmic neutrinos around the solar system

 $\eta = n_v / \langle n_v \rangle$

Model for the relic neutrinos in KATRIN

Karlsruher Institut für Technologie

Fit parameters:

- N amplitude of the signal
- E₀ effective endpoint energy
- m_2 effective mass of the electron antineutrino
- B background rate
- η local overdensity
- meV energy is neglected

$$R_{\rm diff}(E) = R_{\beta}(E) + R_{\rm C\nu B}(E)$$

Relic neutrinos in the first science runs

- 1st campaign (2019)
 - 522 hours
 - 3.4 μ g for capture on tritium
- 2nd campaign (2019)
 - 744 hours
 - $^-$ 13.0 μg for capture on tritium
- no evidence for relic neutrino overdensity
 - upper limits

Relic neutrinos: results and prospects

- search for large overdensity η of relic neutrinos near the Earth
- $\eta < 1.1 \cdot 10^{11}/\alpha$ at 95% C.L. the search is statistically limited
- improved by 2 orders of magnitude compared to previous laboratory limits

Lorentz invariance violation

- Lorentz invariance violation (LIV) can be probed by KATRIN (oscillation-free parameters accessible only in kinematics / endpoint experiments)
- "Standard Model Extension" (SME) based on effective field theory + background fields
- Anisotropic effects could be observable at KATRIN ("intrinsic direction" via acceptance cone)

Possible impact on β -spectrum:

- Global shift of endpoint E₀
- Sidereal oscillation of E₀: search in repeated spectrum scans (typ. scan sequence ~2 hrs)

Lorentz invariance violation in KATRIN

KATRIN Collab., arXiv:2207.06326

Conclusion & Outlook

- Recent results and improvements
 - First sub-eV result from KATRIN: m_v < 0.8 eV (90 % CL) with the full 2019 dataset</p>
 - Optimized configuration of EM-fields \rightarrow background reduction
 - Optimized source operation mode \rightarrow reduction of source systematics
- KATRIN is continuosly taking data
 - 200 days/year, target sensitivity: m, < 0.2-0.3 eV (90 % CL), measurement or upper limit?</p>
 - Further improvement of background by "active transverse energy filter" (aTEF), reduction of systematics
- Physics programme beyond v mass
 - First searches for eV- and keV- scale sterile neutrinos, relic neutrinos as well as the LIV
 - keV sterile neutrino searches with a novel silicon drift detector (SDD) to start in ~2025

Thank you for your attention!

Istituto Nazionale di Fisica Nucli