Coherent Neutrino Scettering: The CONUS Experiment and future Potential

Manfred Lindner On behalf of the CONUS Collaboration

41st Course Star Mergers, Gravitational Waves, Dark Matter and Neutrinos in Nuclear, Particle and Astro-Physics, and in Cosmology Erice-Sicily: September 16-24, 2019

Coherent v Scattering

Z-exchange of v with nucleus

 $Q_w = N - (1 - 4\sin^2\theta_w)Z \sim \mathbf{N}$

→ mostly neutrons momentum ← → wavelength

Very low momentumnucleus recoils as a whole

Important: Coherence length ~ $1/E \rightarrow E_{\nu}$ below O(50) MeV \rightarrow low energy $E_{\nu} \leftarrow \rightarrow$ lower cross sections \rightarrow very high flux!

$$\frac{d\sigma(E_{\nu},T)}{dT} = \frac{G_f^2}{4\pi} Q_w^2 M \left(1 - \frac{MT}{2E_{\nu}^2}\right) F(Q^2) \sim \mathbb{N}^2$$

N ~ 40 $\rightarrow \mathbb{N}^2 = 1600 \quad \Rightarrow \text{ detector mass 10t } \Rightarrow \text{ few kg}$

Different experimental Paths

Low energy v's from accelerators:

- π -decay-at-rest (DAR) v source
- different flavors produced
- relatively high recoil energies
- → close to de-coherence
- → 1st observation of CEvNS by COHERENT → K. Scholberg

Reactors:

- lower v energies than accelerators
- lower cross section higher flux
- different flavor content implications for probes of new physics

→ CONUS

Others: individual & synergetic...

M. Lindner, MPIK

Experimental Requirements

- measure nuclear recoil energy T
 for E_v = 10 MeV → T_{max} ~ 3 keV (in Ge)
- energy loss due to quenching (Lindhard)
 Quenching Factor (QF) at low energy
 include QF uncertainties

D. Barker, D.M. Mei, 2012 [1]

detection of CEvNS signal:

- very low background
 - radio-pure materials
 - "virtual depth" shielding
- low noise threshold (sub keV) + mass
- very high v flux

The CONUS Experiment

Combine:

- highest neutrino flux -> close to power reactor
- best background suppression → "virtual depth"

COherent NeUtrino Scattering experiment

C. Buck, A. Bonhomme, J. Hakenmüller, G. Heusser, M. Lindner, W. Maneschg, T. Rink, H. Strecker - Max Planck Institut für Kernphysik (MPIK), Heidelberg

K. Fülber, R. Wink - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

The CONUS Reactor Site

The Brokdorf (Germany) nuclear power plant:

thermal power 3.9 GW_{th} detector @ d=17m → v flux: 2.4 x 10¹³/cm²/s very high duty cycle

→ very intense integral neutrino flux E_v up to ~ 8 MeV → fully coherent

- overburden 10-45 m.w.e
- access during reactor operation
- measurements of n background
- **ON/OFF periods**
 - → backgd. only measurement

Detectors: CONUS 1-4

- p-type point contact HPGe
- 4x 1kg active mass 3.85kg
- spec. for pulser res. (FWHM) ≤ 85eV
 → noise threshold < 300eV
- electrical PT-cryocoolers
- ultra low background components
- close collaboration with Canberra

Detector	Pulser FWHM _P [eV _{ee}]
CONUS-1	69 ± 1
CONUS-2	77±1
CONUS-3	64±1
CONUS-4	68 ± 1

Long term stability

Under lab. Conditions: stan. dev. of peak position: +-15eV (+-0.02%) (within 45 days)

[keV]

stability of peak position 122keV line of ⁵⁷Co for conus-2

energy [keV_]

Linearity of energy scale activation lines: calibration Ge68, Ge71 (10.37 keV) CONUS-4 energy [keV e Zn65,Ga68. Ga68 Ge68.Ge71 (9.65 keV) (0.92-1.30 keV) Zn65 $\chi^2/ndf = 1.07$ 98 keV 50 100 150 200 250350 300amplitude [a.u.]

``Virtual Depth'': The GIOVE Shield

- R&D at MPIK
- main purpose: material screening
 @ shallow depth (15 mwe)
- coaxial HPGe detector (m_{act} = 1.8 kg)
- radio-pure passive shielding
 - Pb, B-doped PE, μ-veto, OFHC Cu
- active veto: optimized to reduce $\mu 's$ and $\mu \text{-induced signals}$
 - plastic scintillators with PMTs
 - 99% muon veto efficiency (dead time ~2%)

(²²⁶Ra: 70µBq/kg,²²⁸Ra: 110µBq/kg, ²²⁸Th 50µBq/kg)

`virtual depth''
 UG projects close to surface
 G.Heusser et al., Eur.Phys.J.
 C(2015)75:531

The CONUS Detector

Successful combination of three essential improvements:

- excellent shielding (GIOVE @ MPIK = "virtual depth")
- new detectors with very low thresholds & PT cryocooling
- site with very high neutrino flux

Project start summer 2016 → data taking spring 2018

M. Lindner, MPIK

Test Assembly and Installation *ⓐ* **Reactor**

- assembly at MPIK UG lab → characterization
- \rightarrow commissioning

installation @ Brokdorf → full assembly → commissioning

M. Lindner, MPIK

Radon Mitigation *a* **Reactor Site**

radon at reactor site: closed room, thick concrete walls \rightarrow 100-300 Bq/m³ half-life of ²²²Rn: 3.8d \rightarrow counter measure @reactor site: hermetical sealing + flush with aged breating air bottles ~1 l/min

1.2 meas.value / meas.max 0.8 0.6 0.40.2 rel. Rn activity in room integ, count rate in Ge 10 12 14 16 18 2022 time [d] no flushing flushing with breathing air bottles

CONUS1: integral bg in [20,440] keV_{ee}

ERICE Sept 16-24, 2019

Towards CEvNS Detection

Simple: Compare ON versus OFF To fully exploit the results:

Exposure: Reactor ON/OFF periods

- Smooth detector operation: reactor ON-OFF (thermal power)
- ON periods: reactor is operated at 95% of maximum 3.9 GW thermal power
- **OFF periods**: challenging due to environmental stability and less exposure
- Run 1 ended 10/2018 and Run 2 started in 05/2019 → more OFF time!

Reactor Physics Implementation

Expected Signal

Updated prediction including new reactor information:

- Daya Bay covariance matrix,...
- thermal power total uncertainty: +-2.5%
- Quenching factor is largest systematic error (as for all CEvNS experiments)

- "virtual depth" works: bg rates of 10 (1) cts/d/kg below 1 keV (above 2 keV)
- 1yr of operation: only 4 lines visible below 12keV: ⁷¹Ge, ⁶⁸Ge, ⁶⁵Zn, ⁶⁸Ga
- no hints for other lines: ⁵⁵Fe, ⁵⁶Fe, ⁴⁹V, ⁷³As, ⁷⁴As, ⁵¹Cr, ⁵⁶Ni, ⁵⁶Co, ⁵⁸Co (less than what has been achieved by several other DM experiments)
- Very low bg shield at reactor site possible w/o contamination!

Background Stability

- radon under control, little variation has no impact on low energy regime
- decaying Ge isotope bg rate can be well corrected in spectral fit for all ON/OFF periods
- hadronic showers close to surface at few m.w.e. fully negligible (non-trivial and not true for all other experiments...)
- Muon flux variations have a negiligible impact

Neutron Spectroscoy @Reactor Site

Ge recoils from fast neutrons can mimic CEvNS **NEMUS** Fast neutron classes Corr. with setup by PTB therm. power μ -ind. in Pb inside shield No → on-site μ -ind. above ceiling No neutron (α, \mathbf{n}) -reactions from walls No outside fission n from spent fuel rods No spectroscopy of shield fission n from reactor core Yes Neutron spectrum from fission of 235U **Remaining fast neutrons?** (n.e) 0.016 up 0.014 up 0.012 propagation 0,30 zoom in y axis Thermal peak at reactor core Model X 0,25 Model Y suo. 0.01 ¥ 0.01 0,20 water 0.008 (B)(H4-0.03 0,15 Steel 5 0.006 0.00 0,10 16-09 18-07 18-05 Neutron energy / MeV 16-01 0.004 Concrete 0.002 0,05 Flat or slope? -6 -2 0 0.00 log(neutron energy [MeV]) 1E+01 1E+03 1E-09 1E-07 1E-05 1E-03 1E-01 neutron energy / MeV

- 1. Neutron field highly thermalized (>80%), correlated with thermal power
- → fully absorbed by B-PE layers (MC)
- 2. Residual fluence: if at all epithermal from reactor cosmic 100 MeV n: negligible
- → reactor-correlated fast n inside shield ~ negligible

Thermal Power correlated Background

- neutron field inside A408 highly thermalized, but inhomogeneous → mapping; lession:
 → should be done for all reactor experiments
- MC demonstrates that almost no reactor neutrons arrive at diodes inside shield; at least ten times less then the expected signal
- µ-induced neutrons dominant, but at constant rate ←→ non ON/OFF effect

Background Model

- background MC includes detailed knowledge from material screening and neutron measurements
- the main left-over components are μ -induced and from Pb210 in the shield
- Consistency between: commissioning at MPIK at 15 m.w.e. ←→ operation at KBR at 24 m.w.e.
- fully consistent background understanding, no surprises

The Status of CONUS

- KBR Brokdorf: Very strong v-source; W_{th} = 3.9GW @17m → ~10¹³ v/(cm² s); detailed information on flux, spectrum, ...
- CONUS: Very low threshold HPGe detectors `virtual depth"; very low bg demonstrated

- Comprehensive campaign to understand remaining backgrounds
 very detailed study (neutrons): Eur. Phys. J. C (2019) 79: 699
 reactor correlated background inside shield neligible
- Detailed background modelling and stability studies
- NEUTRINO-2018: 114/112 kg*d of OFF/ON data \rightarrow 2.4 σ stat. excess
- More data (OFF data!) ; very detailed analysis nearing completion

The Future: CONUS100

Upscaling of a working technology to $100 \text{kg} \rightarrow \text{very interesting potential}$ high statistics \rightarrow precision \rightarrow potential for various interesting topics...

assume:

	Puler/Thresh [eV]	QF=0.15	BSMsens	QF=BF	BSMsens	QF=0.25	BSMsens
assume: 100kg detector 4GW @ 15m flux ~3*10 ¹³ /cm ² /s background 1/kg/day	40 / 120	647 474/ 8291 / 78.1	1*10 ⁻³	965 999/ 10 775/89.7	1*10 ⁻³	2.9*10 ⁶ / 15 158 / 189	6*10 ⁻⁴
	45 / 135	407 092/ 8 036 / 50.7	2*10 ⁻³	664 316/ 10 519/63.2	1*10 ⁻³	2.1*10 ⁶ / 14 866 / 144	7*10 ⁻⁴
	50 / 150	254 745/ 7780 / 32.7	2*10 ⁻³	458 072/ 1 0264/44.6	1*10 ⁻³	1.6*10 ⁶ / 14 574 / 84.9	8*10 ⁻⁴
	55 / 165	158 109/ 7 524 / 21.0	3*10 ⁻³	315 843/ 9 971/31.7	2*10 ⁻³	1.2*10 ⁶ / 14 318 / 84.9	9*10 ⁻⁴
BSMsens=∆S/S	60 / 180	97 066/ 7 305 / 13.3	3*10 ⁻³	217 277/ 9 716/22.4	2*10 ⁻³	919 435/ 13 026 / 65.6	1*10 ⁻³
	65 / 195	58 827/ 7 049 / 8.3	4*10 ⁻³	148 848/ 9 460/15.7	3*10 ⁻³	696 196/ 13 770 / 50.6	1*10 ⁻³
	70 / 210	35 154/ 6 830 / 5.1	5*10 ⁻³	101 386/ 9 204/11.0	3*10 ⁻³	527 204/ 13 514 / 39.0	1*10 ⁻³
	75 / 225	20 711/ 6 575 / 3.2	7*10 ⁻³	68 573/ 8 949/7.7	4*10 ⁻³	398 867/ 13 222 / 30.2	2*10 ⁻³
Manascha Rink Salatha MI	80 / 240	12 042/ 6 355 / 1.9	9*10 ⁻³	46 008/ 8 730/5.27	5*10 ⁻³	301 231/ 12 966 / 23.2	2*10 ⁻³
	85 / 255	6 924/ 6 136 / 1.1	1*10 ⁻²	30 598/ 8 474/3.6	6*10 ⁻³	226 910/ 12 711 / 17.9	2*10 ⁻³
manesong, min, suutic, mi	BSMsens=∆S/S					S[1/yr] /	/ B[1/yr] / R=S/B

M. Lindner, MPIK

Searches for new Physics: NSI's

NSI's $\leftarrow \rightarrow$ new physics at high scales Which are integrated out Z', new scalars, ... $\rightarrow \varepsilon_{ij}$ $\mathcal{L}_{NSI} \simeq \epsilon_{\alpha\beta} 2\sqrt{2}G_F(\bar{\nu}_{L\beta} \ \gamma^{\rho} \ \nu_{L\alpha})(\bar{f}_L \gamma_{\rho} f_L)$

 $\frac{d\sigma}{dT}(E_{\nu},T) = \frac{G_F^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2}\right) \times \left\{ \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{e$ $\sum_{\alpha e} \left[Z(2\varepsilon_{\alpha e}^{uV} + \varepsilon_{\alpha e}^{dV}) + N(\varepsilon_{\alpha e}^{uV} + 2\varepsilon_{\alpha e}^{dV}) \right]^2 \right\}$

Barranco et al. 2005

Competitive method to test TeV scales
 ε = 0.01 ← TeV scales

NSI-Potential

100kg detector, 5 years operation @ 4GW ML, W. Rodejohann, X.Xu

M. Lindner, MPIK

Precise Measurement of $sin^2\theta_W$ at low E

potential problem: (g-2) anomaly

Z_d: M=150 MeV; ...other parameters

→ Light dark sector?

 $sin^2\theta_W$ precisely known in SM SM quantum corrections \rightarrow running $sin^2\theta_W^{eff}$

Searches for new Physics: Magnetic Moments

Magnetic moment for minimal v masses are very tiny:

Dirac:
$$\begin{aligned} \mu_{kk}^D &\simeq 3.2 * 10^{-19} \left(\frac{m_k}{\text{eV}}\right) \mu_B \\ \text{ajorana:} \quad \mu_{ll'}^M &\lesssim 4 * 10^{-9} \mu_B \left(\frac{M_{ll'}^M}{\text{eV}}\right) \left(\frac{\text{TeV}}{\Lambda}\right)^2 \left|\frac{m_{\tau}^2}{m_l^2 - m_{l'}^2}\right| \end{aligned}$$

New physics → detectable enhancements due to new physics: SUSY, extra dimensions, ...

At least new best limits: e-scattering (GEMMA) and astrophysics:

$$\mu_{\nu} < 3 \times 10^{-11} \mu_b$$

Scattering on protons coherently enhanced: → detectable at low energy (Vogel & Engel 1989)

M. Lindner, MPIK

Μ

ERICE Sept 16

Potential for Magnetic Moments

100kg * 5y = 500 kg-year ; low threshold → one order of magnitude better

Searches for new Physics: Sterile v's

- Various indications / hints for sterile neutrinos
- Tensions with cosmology?
- eV hints with small mixing
- keV warm dark matter with tiny mixing $\leq 10^{-8}$ x
- ...different mass ranges
- any sterile state would motivate more...

 $P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 4|U_{\alpha 4}|^2(1-|U_{\alpha 4}|^2)\sin^2(1.27\Delta m_{41}^2L/E)$

test if / how flux deviates from 1/R² time scales compared to other projects

B. Dutta et al, arXiv:1511.02834

Nuclear Structure with coherent Scattering

Remember: DAR sources close to de-coherence ←→ **combine with reactor measurements**

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T} \approx \frac{\mathrm{G}_{\mathrm{F}}^{2}\mathrm{M}}{4\pi} \left(1 - \frac{\mathrm{M}T}{2\mathrm{E}^{2}}\right) \left[\mathrm{N}F_{\mathrm{N}}(\mathrm{q}^{2}) - \mathrm{Q}_{\mathrm{W}}\mathrm{Z}F_{\mathrm{Z}}(\mathrm{q}^{2})\right]^{2}$$

Nuclear form factors F_{N,Z}(q) are Fourier transforms of N & P densities
 → resolve nuclei (mostly neutrinos) in neutrino light

Fit recoil **spectral shape** to determine the F(Q²) moments (requires very good energy resolution, good systematics control)

CEvNS Connections to more Topics...

DM connection:

- 1) DM experiments <u>assume</u> coherent DM scattering \rightarrow test with v's
- 2) Neutrino floor of direct DM experiments will measure CEvNS
 → combine different measurements

CEvNS cross-section

3) Important for astrophysical applications: supernovae, ...
4) ...

Nuclear Safeguarding

P. Huber, talk at NA/NT workshop, Manchester, May 2015

Presence of plutonium breeder blanket

in a reactor has v spectral signature

$${}^{238}\mathrm{U}+n \rightarrow {}^{239}\mathrm{U} \xrightarrow{\beta} {}^{239}\mathrm{Np} \xrightarrow{\beta} {}^{239}\mathrm{Pu}$$

v spectrum is below IBD threshold

➔ accessible with CEvNS, but require low recoil energy threshold

a) Of interest to IAEA

b) Could be used as an extra "sensor" in reactors (close to core ← → 1/R²)
→ safety, optimal burn-up = neutrino technology

More Phenomenology / Theory of CEvNS

- coherent v's → conceptually very interesting questions see e.g. Akhmedov, Arcadi, ML, Vogl, JHEP 1810 (2018) 045, arXiv:1806.10962
 - can coherent scattering occur at macroscopic scales?
 - role of the recoil of constituents in quantized picture
 - semi-classical factorization of QFT process into (cross-section) * $F(q^2)$?

- ...

- coherence length in QFT approach Egorov, Volobuev: 1902.03602
- connections to dark matter models (many...)
- producing new fermion in CEvNS Brdar, Rodejohann, Xu: 1810.03626
- effects of CP violating parameters on CEvNS processes see e.g. Sierra, De Romeri, Rojas: arXiv:1906.01156

. . . .

[•]

Summary

- CEvNS was 1^{st} observed by COHERENT at $E_{\nu} \simeq 30-50$ MeV
- CONUS starts to see CEvNS with reactor neutrinos (few MeV)
 - 1st rate only results from one month of reactor on
 - shape... \rightarrow more significant \rightarrow to be published soon
 - detector & reactor are running → more statistics soon
- **CEnNS** will become an interesting tool
 - upscaling of existing technology to O(100kg) various physics topics:
 - coherent v scattering $\leftarrow \rightarrow$ DM & WIMP scattering, neutrino floor
 - search / limits for magnetic moments
 - search for new physics: NSIs, steriles, $sin^2\theta_W$, sterile osc. searches
 - nuclear form factors with neutrinos $F(q^2)$
 - reactor v spectrum & anomalies
 - reactor monitoring: safe-guarding, optimization

→ very interesting potential of CEvNS