Sterile Neutrino Search at J-PARC MLF

Takasumi Maruyama (KEK) for JSNS² collaboration

> International School of Nuclear Physics 41st course (Erice-Sicily)

2019/9/17

Sterile neutrinos

- Sterile neutrinos could give an insight for the questions beyond the standard model; (E.g.; PLB 631, 151 (2005))
 - No strong, electro-magnetic, weak interactions.
 - Introduced to explain both results of LSND (later we show) and LEP (:there are only 3 weak interactive neutrinos below 45GeV) experiments
 - Observed by mainly neutrino oscillations (?)
 - Beyond PMNS matrix oscillation
 - Could be v_{R} (Majorana) or new particle
 - LSND, MiniBooNE, reactors, Ga experiments indicate the existence.
- sterile neutrino could be a dark matter candidate ?

Indication of the sterile neutrino ($\Delta m^2 \sim 1 eV^2$) ?

 Anomalies, which cannot be explained by standard neutrino oscillations for ~20 years are shown;

Experiments	Neutrino source	signal	significance	E(MeV),L(m)
LSND	μ Decay-At-Rest	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	3.8σ	40,30
MiniBooNE	π Decay-In-Flight	$\nu_{\mu} \rightarrow \nu_{e}$	4.5σ	800,600
		$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	2.8σ	
		combined	4.7σ	
Ga (calibration)	e capture	$v_e \rightarrow v_x$	2.7σ	<3,10
Reactors	Beta decay	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{x}$	3.0σ	3,10-100

- Excess or deficit does really exist?
- The new oscillation between active and inactive (sterile) neutrinos?
- (Note: no indications in $v_{\mu} \rightarrow v_{\mu}$, recent reactor experiments using energy spectrum have negative results)

Please also see M.Dentler et al JHEP 08, 010 (2018) for recent reviews

Neutrino oscillations with $\Delta m^2 \sim 1 eV^2$ region

(3+1) model case

4

Appearance (LSND)

2019/9/17

LSND $\overline{\nu}_{m} \rightarrow \overline{\nu}_{e}$ Signal

1998 at LANL

 π^- , μ^- absorbed before decay into v's there should not be ve at the level of $7x10^{-4}$

Signal :
$$\overline{ve} p \rightarrow e^+ n np \rightarrow d\gamma (2.2 MeV)$$

With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

3.8 S evidence for oscillation.

5

MiniBooNE results (2018)

- Significant low energy events excess is observed. (4.5 σ)
- They claimed that this excess is due to the same phenomena as LSND experiment.
- Concerns are
 - Systematic uncertainties (neutrino interactions, background understandings)
 - Especially, unknown single gamma production events may cause this.
- MicroBooNE (Large Liquid Ar TPC detector) is checking the neutrino interaction mode. 2019/9/17

Current situation / what experimentalists should do

- 3+1 oscillation model cannot explain all phenomena from various experiments.
- If $v_{\mu} \rightarrow v_{e}$ anomalies are confirmed (high significance but maybe not the issue of level of σ) but the $v_{\mu} \rightarrow v_{\mu}$ (and $v_{e} \rightarrow v_{e}$) bounds are not refuted, we absolutely need new physics model.

- Or experimental data is something wrong?? This part is being and will be examined by experimentalists extensively.
 - MicroBooNE (running) / FNAL SBN (SBND+MicroBooNE+ICARUS) for Mini-BooNE anomaly
 - JSNS² for the LSND experiment
 - Many reactor experiments are on-going, thus they can check further.

SBN Program at Fermilab

3 LArTPCs in the Booster Neutrino Beamline, looking for (among other things) muon->electron flavor oscillations as a function of L/E

arXiv:1503.01520, January 2014

Direct test for MiniBooNE Anomaly.

J.Spitz's talk in NuFact2019 SBND (first data in 2021) MicroBooNE (running since late-2015) ICARUS (fill in late-2019; first data in 2020)

JSNS² (J-PARC Sterile Neutrino Search at J-PARC Neutron Spallation Source)

JSNS² collaboration (55 collaborators)

- 6 Japanese institutions (27 members)
- 10 Korean institutions (20 members)
- 1 UK institution (1 members)
 5 US institutions (7 members)

Direct tests for LSND.

Technical Design Report (TDR): Searching for a Sterile Neutrino at J-PARC MLF $(E56, JSNS^2)$

S. Ajimura¹, M. K. Cheoun², J. H. Choi³, H. Furuta⁴, M. Harada⁵, S. Hasegawa⁵, Y. Hino⁴, T. Hiraiwa¹, E. Iwai⁶, S. Iwata⁷, J. S. Jang⁸, H. I. Jang⁹, H. K. Jeon¹⁰, S. H. Jeon¹⁰, K. K. Joo¹¹, J. R. Jordan⁶, S. K. Kang¹², T. Kawasaki⁷, Y. Kasugai⁵, E. J. Kim¹³, J. Y. Kim¹⁰, S. B. Kim¹⁴, W. Kim¹⁵, K. Kuwata⁴, E. Kwon¹⁴, I. T. Lim¹¹, T. Maruyama^{*16}, S. Meigo⁵, S. Monjushiro¹⁶, D. H. Moon¹¹, T. Nakano¹, M. Niiyama¹⁷, K. Nishikawa¹⁶, M. Nomachi¹, M. Y. Pac³, J. S. Park¹⁶, S.J.M. Peeters¹⁸, H. Ray¹⁹, C. Rott¹⁰, K. Sakai⁵, S. Sakamoto⁵, H. Seo¹⁴, S. H. Seo¹⁴, A. Shibata⁷, T. Shima¹, J. Spitz⁶, I. Stancu²⁰, F. Suekane⁴, Y. Sugaya¹, K. Suzuya⁵, M. Taira¹⁶, T. Torizawa⁷, J. Waterfield¹⁸, R. White¹⁸, M. Yeh²¹, and I. Yu¹⁰

¹Research Center for Nuclear Physics, Osaka University, Osaka, JAPAN ²Department of Physics, Soongsil University, Seoul 06978, KOREA ³Department of Radiology, Dongshin University, Chonnam 58245, KOREA ⁴Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi, JAPAN ⁵J-PARC Center, JAEA, Tokai, Ibaraki JAPAN ⁶University of Michigan, Ann Arbor, MI, 48109, USA ⁷ Department of Physics, Kitasato University, Sagamihara 252-0373, Kanagawa, JAPAN ⁸Gwanqju Institute of Science and Technology, Gwangju, 61005, KOREA ⁹Department of Fire Safety, Seoyeong University, Gwangju 61268, KOREA ¹⁰Department of Physics, Sungkyunkwan University, Suwon 16419, KOREA ¹¹Department of Physics, Chonnam National University, Gwangju, 61186, KOREA ¹²School of Liberal Arts, Seoul National University of Science and Technology, Seoul, 139-743, KOREA ¹³Division of Science Education, Physics major, Chonbuk National University, Jeonju, 54896, KOREA ¹⁴Department of Physics and Astronomy, Seoul National University, Seoul 08826, KOREA ¹⁵Department of Physics, Kyungpook National University, Daegu 41566, KOREA ¹⁶High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, JAPAN ¹⁷Department of Physics, Kyoto University, Kyoto, JAPAN ¹⁸Department of Physics and Astronomy, University of Sussex, Brighton, UK ¹⁹University of Florida, Gainesville, FL, 32611, USA ²⁰University of Alabama, Tuscaloosa, AL, 35487, USA ²¹Brookhaven National Laboratory, Upton, NY, 11973-5000, USA

JSNS² setup at J-PARC MLF

Searching for neutrino oscillation : $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ with baseline of 24m. no new beamline, no new buildings are needed \rightarrow quick start-up

Neutrinos Production and Detection

- Large amount of parent μ + in Hg target $\rightarrow \overline{v}_{\mu}$ are produced.
- If sterile v exist, $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillation is happened with 24m.

Timing and Energy

Timing and Energy are friends of JSNS²

- > Timing: Ultra-pure v from μ^+ Decay-at-Rest
 - \succ v from π and K -> removed with timing
 - Beam Fast neutrons -> removed w/ time
 - \succ Cosmic ray BKG -> reduced by 9µs time window.
- Energy: signals / BKG separation by energy.
 ν from μ has well-known spectrum.
 - Energy reconstruction is very easy at the IBD. (Ev ~ Evis + 0.8MeV)
 - \succ v from μ is high suppressed.

#events (1MW x 3 years x 1 detector (17tons))

Source	contents	#ev.(17tons x 3years)	Reference : SR2014 (50tons x 5 years)	comments
background	$\overline{\nu_e}$ from μ -	43	237	Dominant BKG
	¹² C(v _e ,e-) ¹² N _{g.s.}	3	16	
	Beam fast neutrons	Consistent with 0 < 2 (<u>90%CL UL</u>)	<13	Based on real data
	Fast neutrons (cosmic)	~0	37	
	Accidental	20	32	Based on real data
signal		87	480	Δm^2 =2.5, sin ² 2 θ =0.003
		62	342	Δm^2 =1.2, sin ² 2 θ =0.003

Accidental BKG is calculated by; R acc = $\Sigma R_{prompt} \times \Sigma R_{delay} \times \Delta_{VTX} \times N_{spill}$

- $-\Sigma R_{prompt}$, ΣR_{delay} are probability of accidental BKG for prompt and delayed.
 - $\Delta_{\rm VTX}$; BKG rejection factor of **50**.
 - N_{spill} (#spills / 5 years) = 1.9x10⁹

Sensitivity / Upgrade

- To have a good international competition capability, we start the experiment with one detector (17tons fiducial volume).
- Even with one detector, we have a good 90% C.L constraints for LSND results for 3 years. Left plot
- Meanwhile, we are making effort to obtain the budget to build the 2nd detector.

60

Achievements so far

- 2013 Sep; A proposal was submitted to the PAC
- 2014 Apr-Jul; We measured the BKG rate on 3rd floor. -> manageable beam /cosmic BKGs to perform JSNS² (PTEP 2015 6, 063C01)
- 2014-Dec; The result was reported to J-PARC
 PAC. → the stage-1 status was obtained.
- 2016-June: The grant was approved for one detector construction
- 2017-May: Technical Design Report was submitted to J-PARC PAC and arXiv (arXiv:1705.08629 [physics.ins-det])
- 2018-Nov: The stage-2 ("go-sign" of starting the experiment) from KEK/J-PARC was granted.
- We aim to start JSNS² in JFY2019, the detector construction will be completed soon.

Stainless tank construction

- Construction at J-PARC (2017/Dec 2018/Feb)
- Water leak test was done on 2018/Feb.
- L-type angles, stainless plates were welded to the tank to install PMTs and acrylic tank. (bottom-right picture)
- This tank was moved from the construction place to assembly building.

Acrylic vessel installation rehearsal (2019/Feb)

MORIMATSU

- Feb-18: the acrylic vessel arrived from Taiwan.
- Immediately after the arrivals, we had rehearsal to install the acrylic tank. → succeeded.
- Currently, the acrylic tank was out of detector to install PMTs.

10" PMTs

- 67 RENO experiment spare PMTs were rental to JSNS².
- 13 Double-Chooz spare PMTs were also borrowed.
- 80 PMTs are now at J-PARC. Most of them were precalibrated and installed to the detector.
- ~50 more PMTs will come to J-PARC from 2019 Sep to Dec.
- Soon after the installation of these ~50 PMTs, we will start data taking.

PMT pre-calibration

The system has been launched at J-PARC

- Gain, P/V ratios, Dark rate (@ 10⁷ gain) measurements for 8 PMTs at once
- 8 PMTs/day can be pre-calibrated.
- charge info. is much more important than timing for JSNS2's reconstruction because of several 10 MeV.

- Typical 1 p.e. dist. with various HVs.
- Currently most of arrived PMTs were pre-calibrated.
- A few PMTs have troubles. \rightarrow rejected to use.

PMT Installation status

- Immediately after the precalibration (and the results are OK), we can install the PMTs in parallel to the pre-calibration works.
- We already installed 67 PMTs to barrel and veto parts. (remaining PMTs will be installed soon)
- After the installation works, one by one checks of PMTs signal were and will be done. → so far, installed PMTs have no problems to see the signal.

Liquid Scintillator (LS) Production in Korea (2018)

35 tons of LS was produced at RENO site and delivered to Japan with two iso-tanks.

Date	Job description
Sep. 12 - 18	Refurbishment and cleaning
Sep. 28	ISO tank arrived at RENO site
Oct. 1 - 22	LS production (6 shift periods)

21 batches in total (37000 L)

- 4 peoples per day
- 2 of ISO tanks

LS storage in Japan

First sampling test in Japan

460 Wa480 gth [n5] Wavelength [nm]

Gd-loaded Liquid Scintillator is donated from Daya-Bay

- Daya-Bay experiment kindly donated the 20 tons of Gd-loaded Liquid Scintillator (GdLS).
 → JSNS² would express deep appreciatiation for this.
- On 2019 August-1, the GdLS passed Japanese custom.
- We visited the GdLS/LS storage area and obtained samples on Aug-6.
- We did measure the optical properties at Tohoku Univ.. They look nice.

	Values	Method
Absorbance	See right plot	UV-Vis spectrometer
Light yield	11.7 photon/keV	Back scattered g of 137Cs
Gd concentration	0.096+-0.002 w%	EDTA Titration

Neutrino-nucleus interaction in Type-II SN

v-A interactions are important in

- core-cooling by ν -emission
- v-heating on shock wave
- v-process of nucleosynthesis
- efficiency of neutrino detectors

Reaction rates are to be known with accuracy better than ~10%!

Experiment	$\sigma(^{12}C(v_e,e^-)^{12}N_{g.s.}) (10^{-42} \text{ cm}^2)$
KARMEN (PLB332, 251 (1994))	9.1±0.5±0.8 (10.4%)
LSND (PRC64, 065501 (2001))	8.9±0.3±0.9 (10.7%)
JSNS ² (arXiv:1601.01046)	(~3%(stat.) expected in 5yrs)

JSNS² physics: Cross section measurements with monoenergetic muon neutrinos

Summary

- If sterile neutrinos exist, it opens the era of new physics.
- There are a lot of experiments on going to search eV scale sterile neutrinos. Recently, direct confirmation or refuting of LSND and MiniBooNE experiments are getting crucial.
- For the direct test for LSND experiment, the JSNS² experiment will start data taking very soon.
 - Same neutrino sources (energy, flavor), neutrino target and interaction are used.
 - But using much better quality of beam (on duty factor) and Gd-loaded liquid scintillator. → can improve signal-to-noise ratio (~100 for accidental BKG)
 - We will complete the detector construction soon.
 - First physics run for 3 years, but meanwhile requesting budget for the 2nd detector.
- Other physics topics are also interesting! You can see the results soon !!

backup

Detector moving to assembly building (2018/Mar)

"M1" (construction) To "HENDEL" (assembly)

ruction)

Around accelerator control building

assembly building

Around assembly building

This work was successful w/o problems!