Beta-delayed neutron emission a new beginning

Robert Grzywacz

University of Tennessee/ORNL

Physics needs:

r-process, nuclear structure, reactor anti-neutrino, reactor physics (decay heat)

Access:

new/improved accelator facilities new detectors *Theoretical tools:*

Large scale shell-model, QRPA

1.E.4 Not to be reproduced by photoprint or microfilm without written permission from the publisher

THE ESSENTIAL DECAY OF PANDEMONIUM: β -DELAYED NEUTRONS

J. C. HARDY[†], B. JONSON^{††} and P. G. HANSEN^{†††} CERN, Geneva, Switzerland

Received 11 November 1977

betract: The β -delayed neutron decay of a fictional nuclide, pandemonium, is created numerically using a statistical model and Monte Carlo techniques. The neutron spectra generated are compared with experimental results for the decays of ${}^{83}A_{8} - {}^{87}B_{1}$. Contrary to previously held beliefs, we find the experimental data to be consistent in all important aspects with a statistical interpretation. It is shown that peak-stripping analyses of the more complex experimental neutron spectra cannot yield reliable decay schemes. In particular, schemes obtained previously for the decays of ${}^{83}A_{8} - {}^{13}B_{1}$ to gether with discussions of structure supposedly in their β -decay strength functions, must be regarded as unjusitified.

> LA-11534-T Thesis

UC-413 Issued: April 1989

Evaluation and Application of Delayed Neutron Precursor Data

Michaele Clarice Brady*

Beta-delayed neutron emission a new beginning

Erice 2019 R. Grzywacz

Beta-delayed neutron emission relevant observables

Beta-delayed neutron detection

VANDLE+ HAGRID at RIBF (11/2018)

VANDLE 48 neutron bars at 100 cm HAGRID 2 HPGE clovers 10x 3"x3" +2x 2"x2" LaBr3

Energy window for beta-delayed neutron emission

Beta delayed neutron emitters βxn and the r-process

Beta delayed neutron emitters βxn and the r-process

Erice 2

Beta delayed neutron emitters βxn and the r-process

New facilities - bonanza for βxn studies Survival of the "conventional" shell-structure ?

Facility for Rare Isotope Beams,

Beta delayed multi-neutron emitters

Effects of the shell gap on the decay of isotopes with N>50

Nuclear structure constraints on beta decay: Gamow-Teller (↑ ↑) operator connects spin-orbit partner orbitals.

This mechanism drives beta delayed neutron emission e.g. across the N=50 shell-gap.

Excitation energy(MeV)

B(GT) in MeV⁻¹

0.

⁷⁹Ni

B(GT) for ⁸⁴Ga and shell model interpretation

Observed large beta strength at high excitations compatible with GT-decay of ⁷⁸Ni core states

Shell-model interpretation "realistic" calculation of GT-strength

82Ga

81Zn

80Cu

79Ni

83Ga

82Zn

81Cu

84Ga

83Zn

82Cu

85Ga

84Zn

Nushellx with hybrid interactions based on: *jj44bpn* for fpg (⁵⁶Ni core, B.A. Brown), (GOOD DESCRIPTION OF N<50 ISOTOPES)

Hybrid interactions with matrix elements for: neutrons in $d_{5/2}$ and protons and neutrons in fpg.

d_{5/2} neutrons "blocked" for B(GT) calculations

Single Particle Energies – experimental systematic (Grawe)

2s1/2 -1 1d5/2 -3 3.88 MeV N=50 -5 0g9/2 1p1/2 -7 0g9/2 1p3/2 -9 0f5/2 1p1/2 -11 N=28 1p3/2 -13 0f5/2 -15 Z=28 -17 -19

14

Erice 2019 R. Grzywacz

Shell-model interpretation "realistic" calculation of GT-strength

GT selectivity in decays of 135,136Sb

Erice 2019 R. Grzywacz

GT selectivity in decays of ^{135,136}Sb shell-model predictions

Beta-delayed neutron emission Shell-structure dominates the first stage

What is the mechanism of the neutron emission: "direct" or via "compound nucleus" ?

Neutrons - no Coulomb barrier !

Direct - fast emission (broad), sensitive to nuclear structure. conserved energy and angular momentum.

Compound - slow emission (narrow), non-sensitive to nuclear structure, conserved energy and angular momentum. "Bohr hypothesis: The properties of the C. N. do not depend upon the detailed way of formation." "Obviously"

(Complex) heavy neutron-rich nuclei: compound nucleus.

T. Kawano, P. Talou, I. Stetcu, and M. B. Chadwick, Nuclear Physics A 913, 51 (2013).

BUT WHY

Decay of ⁸³Ga to (N=50) ⁸²Ge

Decay of ⁸³Ga to (N=50) ⁸²Ge

Decay of ⁸³Ga to (N=50) ⁸²Ge

Statistical model and decay of ⁸³Ga to (N=50) ⁸²Ge

BGT from shell model. Hauser-Feshbach statistical emission code for neutrons and gammas.

Calculations use Kawano HF model (coh code) and shell-model B(GT) (nushell).

Population of states in ⁸²Ge is NOT sensitive to SM structure of ⁸³Ge GT states. *Nueutron emission proceeds through components of the wave functions, which are not captured by the shell model.*

Beta delayed multi-neutron emitters – "cut off" model

 P_{xn} proportional to the integrated β -feeding in the respective energy window ??

Beta-delayed neutrons and Hauser-Feshbach model

25

BRIKEN - neutron counter for P_{xn} measurements (2017 experiment)

A. Tarifeño-Saldivia, et al., J. of Instrum. 12, P04006 (2017)

Isotope reach for the BRIKEN experiment

Y. Shimizu, N. Fukuda, K. P. Rykaczewski, R. K. Grzywacz, J. L. Tain, I. Dillmann, S. Nishimura, H. Takeda, H. Suzuki, D. S. Ahn, N. Inabe, K. Yoshida, H. Ueno, N. T. Brewer, B. C. Rasco, D. W. Stracener, and J. M. Allmond, for the BRIKEN collaboration 2018 RIKEN Accel. Prog. Rep..

P. Moeller, B. Pfeier, and K.-L. Kratz, Physical Review C 67, 055802 (2003).

Erice 2019 R. Grzywacz

Experiment and shell-model + cut-off Expected strong β 2n emission in 87 Ga

The P_{1n} and P_{2n} extracted from the data

Erice 2019 R. Grzywacz

Experiment reveals β 1n dominant in the decay of ${}^{87}Ga$

The P_{0n} , P_{1n} and P_{2n} for 86,87 Ga cannot be reproduced by the SM (cut off)

The necessity to use HF coh/beoh code (Kawano with Koning Delaroche optical model)

Shell-model + statistical model

Shell-model/QRPA + statistical model (HF)

Beta-delayed neutrons and Hauser-Feshbach (QRPA)

M. R. Mumpower, T. Kawano, and P. Möller, Physical Review C 94, 064317 (2016) P. Möller, M. R. Mumpower, T. Kawano, and W. D. Myers, Atomic Data and Nuclear Data Tables 125, 1 (2019),

r-process consequences - decay of %Ga

Cut off model

Statistical model

The decay path shifts to higher A

FRIB Decay Station - complete spectroscopy

https://fds.phy.ornl.gov/FDS-WP.pdf

Where are we heading ... next?

Precision neutron energy measurements with new Neutron dEtector with multi-neutron (Xn) Tracking (NEXT)

- ^a Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- ^b Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- ^c Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA
- ^d Department of Physics Tennessee Technological University, Cookeville, TN, 38505, USA
- ^e Departments of Chemistry and Physics & Astronomy, University of Kentucky, Lexington, KY, 40506, USA

^fAgile Technologies, Inc., Knoxville, TN 37920, USA

Summary

Neutron energy, P_{xn} and gamma-ray measurements (TAS and discrete) essential to establish true decay patterns and deduce strength distribution needed to constrain nuclear models.

Strong one-neutron emission from two-neutron unbound states in β-decays of r-process nuclei ^{86,87}Ga.

Multi-neutron emission "pushed" further from stability for heavier nuclei.

The same mechanism (Gamow-Teller transformation) responsible for beta decay also hinders neutron emission: GT-states in emitter do not overlapp with states in the daughter.

Neutron emission proceeds through "invisible" components of the wavefunctions and can be (functionally) desribed by statistical model (compound nucleus).

BRIKEN Collaboration Institutions

R. Yokoyama,^{1,*} R. Grzywacz,^{1,2} B. C. Rasco,^{2,1} N. Brewer,^{2,1} K. P. Rykaczewski,² I. Dillmann,³ J. L. Tain,⁴ S. Nishimura,⁵ D. S. Ahn,⁵ A. Algora,^{4,6} J. M. Allmond,² J. Agramunt,⁴ H. Baba,⁵ S. Bae,⁷ C. G. Bruno,⁸ R. Caballero-Folch,³ F. Calvino,⁹ P. J. Coleman-Smith,¹⁰ G. Cortes,⁹ T. Davinson,⁸ C. Domingo-Pardo,⁴ A. Estrade,¹¹ N. Fukuda,⁵ S. Go,⁵ C. J. Griffin,⁸ J. Ha,^{7,5} O. Hall,⁸ L. J. Harkness-Brennan,¹² J. Heideman,¹ T. Isobe,⁵ D. Kahl,⁸ M. Karny,¹³ T. Kawano,¹⁴ L. H. Khiem,¹⁵ T. T. King,¹ G. G. Kiss,^{5,6} A. Korgul,¹⁶ S. Kubono,⁵ M. Labiche,¹⁰ I. Lazarus,¹⁰ J. Liang,¹⁷ J. Liu,^{18,5} G. Lorusso,^{19,20,5} M. Madurga,¹ K. Matsui,^{5,21} K. Miernik,¹⁶ F. Montes,²² A. I. Morales,⁴ P. Morrall,¹⁰ N. Nepal,¹¹ R. D. Page,¹² V. H. Phong,^{5,23} M. Piersa,¹³ M. Prydderch,²⁴ V. F. E. Pucknell,¹⁰ M. M. Rajabali,²⁵ B. Rubio,⁴ Y. Saito,³ H. Sakurai,⁵ Y. Shimizu,⁵ J. Simpson,¹⁰ M. Singh,¹ D. W. Stracener,² T. Sumikama,⁵ R. Surman,²⁶ H. Suzuki,⁵ H. Takeda,⁵
A. Tarifeño-Saldivia,⁹ S. L. Thomas,²⁴ A. Tolosa-Delgado,⁴ M. Wolińska-Cichocka,²⁷ P. J. Woods,⁸ and X. X. Xu¹⁸ Ne⁸

VANDLE teams

VANDLE ORNL-HRIBF

M. Madurga, S. Paulauskas, K. Kolos, M. Al-Shudifat, L. Cartegni, A. Fijalkowska, D. Miller, S. Padgett, S. Taylor UTK K. Rykaczewski, C. Gross, A.J. Mendes II, D. Stracener, C. Jost, Y. Liu, D. W. Bardayan, K. Miernik, M. Wolinska-Cichocka, ORNL J.C. Barchelder, S. Liu, C. Matei, W. Peters and I. Spassova, ORAU N. Brewer, J.K. Hwang, Vanderbilt P.D. O'Malley, M. Howard, B. Manning, E. Merino, A. Ratkiewicz and J. Cizewski, Rutgers U. C. Brune and T. Massey, Ohio U. S. Ilyushkin, F. Raiola, D. Walter and F. Sarazin, Colorado School of Mines J. Blackmon, E. Zganjar, Louisiana State U. P.A. Copp, WUL

VANDLE CERN - ISOLDE

UTK : S. Go, S. Paulauskas, S. Z. Taylor ISOLDE : M. Borge, B. C. Gonsalves, R. Lica, L. Lynch, M. Madurga-Flores, O. Tengblad Univ. Warsaw : C. Mazzocchi, M. Piersa A. Korgul, Z. Janas LLNL : K. Kolos ORNL : C. Gross, W. Peters IFIN : C. Costache, B. Dimitrov, S. Kisgov, C. G. Sotty IPN ORSAY : A. Gottardo, S. Franchoo, D. Verney U. Compultense : L. M. Fraile, V. Vedia INFN : G. Benzoni, D. Mengoni, A. Morales IEM/CSIC : I. M. Alonso, A. Perea

VANDLE-NSCL

S. V. Paulauskas,S. Go,T.T. King, A. Keeler,M. Madurga,S.Z. Taylor, UTK J. H. Hamilton, C. Zachary, E.H. Wang Vanderbilt University B. Crider, S. Liddick NSCL A. Fijalkowska, Rutgers University N.T. Brewer ORNL M. M. Rajabali Tennessee Tech. P. D. O'Malley University of №tre Dame M. Karny Warsaw University

VANDLE ANL- CARIBU

UTK- S. Z. Taylor, R. Grzywacz, K. Kolos, S. V. Paulauskas, T. King, S. Gilliam, M. Al-Shudifat ORNL- W. A. Peters, C. J. Gross, K. Rykaczewski, N. T. Brewer, C. Williams, J. M. Allmond

ORAU- J. C. Batchelder CERN- M. Madurga ANL- G. Savard, S. Zhu NSCL- M. Hughes ND- P. O'Malley, O. Hall Rutgers- C. Reingold, D. Walter TTU- M. Rajabali Warsaw- M. Wolinska-Cichocka Mines- S. Ilyuskin

VANDLE -ORNL-OLTF

S. V. Paulauskas, T.King, S. Z. Taylor, K. Smith, S. Burcher, C. Bingham, K. L. Jones, K. T. Schmitt, M. Vostinar, S. Go, W. A. Peters, Y. Xiao (UTK) D. W. Stracener, C. J. Gross, B. C. Rasco, J. T. Matta, K. P. Rykaczewski, N. T. Brewer ORNL A. Lepailleur, Rutgers D. W. Bardayan U. № tre Dame D. Miller (Idaho Nat. Lab.) E. H. Wang (Vanderbilt U.) K. Kolos (LLNL) K. Nishio (JAEA) M. M. Rajabali (Tenn. Tech. U) M. Wolinska-Cichocka (Warsaw. U) Colorado School of Mines: S. Ilyushkin (Mines) M. J. Devlin(LANL)

Office of Science