Machine Learning Inference of the Dense Matter EoS and Quark-Hadron Continuity

Yuki Fujimoto

The University of Tokyo

in collaboration with: K. Fukushima, K. Murase & W. Weise

YF, K. Fukushima, K. Murase, Phys. Rev. D 98, 023019 (2018)
YF, K. Fukushima, K. Murase, arXiv:1903.03400 [nucl-th]
YF, K. Fukushima, W. Weise, arXiv:1908.09360 [hep-ph].

22 Sep. 2019, Erice 2019

Phases of Dense Matter

- Degrees of freedom of dense matter:
 Hadron & Quarks
- One possibility from neutron star phenomenology:
 Quark-hadron continuity
 - both phases are indistinguishable (no order parameter)
 - connected by crossover transition

Schäfer-Wilczek (1999), Hatsuda et al. (2006), Masuda et al. (2013), Baym et al. (2018) 2

Equation of State of Dense Matter

 Dense matter properties are characterized by Equation of State (EoS):

relation between pressure p and (mass) density ρ $p = p(\rho)$

- Essential ingredients for neutron star theory;
 characterizes neutron star structure
- Should be derived from QCD in principle, but many difficulties such as...
 - sign problem; no lattice data
 - renormalization scale dependence in pQCD

Hester et al. (2002)

Current Status of the EoS

- Many nuclear theory calculations
 - ...but reliability of these models decline with growing p

Current Status of the EoS

- Many nuclear theory calculations
 ...but reliability of these models decline with growing p
- Perturbative QCD calculation also has large uncertainty

Current Status of the EoS

- Many nuclear theory calculations
 ...but reliability of these models decline with growing p
- Perturbative QCD calculation also has large uncertainty
- Need systematic way to interpolate these two regions

Systematic Way of EoS Inference

- Growing number of observables of NSs: e.g.) LIGO-Virgo, NICER experiment
- Utilize NS masses (M) and radii (R) Özel-Freire (2016) 14 simultaneous measurements are publicly available; d distribution in (R, M) plane giver - Infer 2.5 Use ([⊙] 2.0 M3 SSM 1.5 with **k (NN**) 1.0 6 8 10 12 14 16 18 Radius (km)

Method of Machine Learning

Input

 $x_1^{(0)}$

 $x_{N_0}^{(0)}$

Training data

→ By "training" the neural network, we extract the relation between input and answer

Method of Machine Learning

Method of Machine Learning

EoS & M-R: TOV Mapping Ψ_{TOV}

The operation of the TOV equation can be regarded as one-to-one mapping: TOV mapping Ψ_{TOV}

Regression Analysis of TOV Mapping

In reality... *M-R* is point-like and has uncertainties \rightarrow finding Ψ_{TOV}^{-1} becomes non-trivial!

Expressing TOV by Neural Network

Find the "EoS predictor" using machine learning

Result: Inferred EoS

Hebeler-Lattimer-Pethick-Schwenk (2013) 16

EoS with M-R relation

Result: Sound velocity

Average sound velocity:

$$c_s^2 = \frac{\partial p}{\partial \rho}$$

- Measure of stiffness for EoS
- Our inferred result shows
 Soft-to-Stiff behavior
- This property may imply
 Quarkyonic picture;
 Nuclear matter seems as
 if it is quark matter

Fukushima-Kojo (2015), McLerran-Reddy (2018)

Result: Sound velocity

Average sound velocity:

$$c_s^2 = \frac{\partial p}{\partial \rho}$$

- Measure of stiffness for EoS
- Our inferred result shows Soft-to-Stiff behavior
- This property may imply
 Quarkyonic picture;
 Nuclear matter seems as
 if it is quark matter

Fukushima-Kojo (2015), McLerran-Reddy (2018)

Soft-to-Stiff EoS

- Our inferred EoS shows soft-to-stiff behavior
- Model study of an EoS shows: Han et al. (2019) If EoS is soft-to-stiff, strong 1st-order QCD transition cannot exist... Only the **crossover** transition is allowed!

What is the physical foundation for the crossover?:
 Quark-Hadron Continuity

Quark-Hadron Continuity

- Preceding analysis has been made to **three-flavor symmetric** matter with masses $m_u = m_d = m_s$
- Natural starting point: **two-flavor symmetric matter** because in reality $m_s/m_{u,d} \sim 30$

Neutron Superfluidity

- Neutrons show superfluidity
 because effective *nn*-interaction ³
 is attractive in some channel ²
- At higher densities, pairing in ${}^{1}S_{0}$ state gets weakened by repulsive core; $\rightarrow {}^{3}P_{2}$ state takes over
- Is this neutron superfluid
 continuously connected to quark
 phase? → YES!

Order Parameter Rearrangement

YF-Fukushima-Weise (2019)

23

Order parameter of neutron superfluid: $\langle \hat{n} \gamma^i \nabla^j \hat{n} \rangle$ Neutron operator: $\hat{n} = (\hat{u} \gamma_5 \hat{d}) \hat{d}$

Order parameter can be rearranged (in MFA) as ...

Two-flavor Continuity: 2SC+<dd>

YF-Fukushima-Weise (2019)

- Two diquark condensates:

$\langle ud \rangle + \langle dd \rangle$

- 2SC + <dd> induces...
 - Chiral symmetry breaking
 - Baryon $U(1)_B$ breaking (leads baryon superfluidity)
 - \rightarrow Same as the neutron superfluid, **continuity set in!**
- For dynamical aspects and supportive evidences, please refer to:
 - YF, K. Fukushima & W. Weise, arXiv:1908.09360

Summary

- Established the method of machine learning to infer
 EoS from mass and radius observations
- Our EoS result is consistent with quark-hadron continuity scenario
- Established the quark-hadron continuity in more realistic context of two-flavor than the previous one; neutron superfluid → 2SC + <dd> condensate

Supplementary materials

Dynamical Aspects of 2SC+<dd>

To have ${}^{3}P_{2}$ pairing at high density, one needs:

- short-range repulsive core \rightarrow disfavors pairing in ${}^{1}S_{0}$ state
- attractive spin-orbit potential \rightarrow favors ${}^{3}P_{2}$ state among ${}^{3}P_{J=0,1,2}$ states

Dynamical Aspects - Repulsive Core

(ud)d

d(ud)

Dynamics that disfavors 1S_0 **pairing**

- Short-range interaction between d-quarks can be understood with this diagram
- Potential between d-quarks reads:

$$V_{12}^{\text{OGE}} = \left(\sum_{A} T_{1}^{A} T_{2}^{A}\right) \frac{\alpha_{s}}{4} \left[\frac{1}{r_{12}} - \frac{2\pi}{3m_{d}^{2}}(s_{1} \cdot s_{2})\delta(r_{12})\right]$$

- <dd> condensate is in color-sextet channel
 → Color factor above becomes repulsive!

Dynamical Aspects - LS Potential

Dynamics that favors ${}^{3}P_{2}$ **pairing**

 $1 ({}^{3}P_{I-2})$

 NJL-type model with scalar and vector couplings + diquark correlations:

$$\mathscr{L}_{int} = G(\bar{\psi}\psi)^{2} + H(\bar{\psi}\bar{\psi})(\psi\psi) - G_{V}(\bar{\psi}\gamma^{\mu}\psi)^{2}$$

$$\langle p' | V_{LS} | p \rangle = \int_{d} \frac{\uparrow p'}{\uparrow p} \int_{d} \frac{\uparrow p'}{\downarrow p} \int_{d} \frac{e^{-mr}}{\uparrow p} L \cdot S$$

$$\Rightarrow \text{Fourier transform } V_{LS}(r) \propto -(1+mr)\frac{e^{-mr}}{r^{2}} L \cdot S \quad (m > 0)$$

$$L \cdot S = \begin{cases} -2 & (^{3}P_{J=0}) \\ -1 & (^{3}P_{J=1}) \end{cases} \Rightarrow \text{Spin-orbit potential is}$$

attractive only in ${}^{3}P_{2}$ state

38