

Antineutrino Emission by Nuclear Reactors: Measurements and Models

Dan Dwyer

41st International School of Nuclear Physics Erice, Sicily Sep. 21, 2019

Neutrino Physics

Reactors have been a powerful tool in neutrino physics:

1950s: First detection of neutrinos

Neutrino Physics

Reactors have been a powerful tool in neutrino physics:

2000s: Distinct signal of neutrino oscillation, Δm_{21}^2 , θ_{12}

Neutrino Physics

Reactors have been a powerful tool in neutrino physics:

2012: Precision oscillation at ~0.5 km/MeV, Δm_{31}^2 , θ_{13}

Recent Developments

Recent interest in models of reactor $\overline{\nu}_{\rm e}$ driven on two fronts:

Oscillation Experiments in search of θ_{13} **:**

- Models of reactor $\overline{\nu}_{e}$ emission used as input to oscillation measurements
- High-statistics $\overline{\nu}_{\rm e}$ rate and spectrum measurements reach %-level precision

Daya Bay

Double Chooz

RENO

Reevaluated emission models inconsistent with past data:

- 2011 state-of-the-art reassessment predicts rate 6% higher than measurements *Phys. Rev. C83, 054615 (2011), Phys. Rev. C84, 024617 (2012)*
- Considered possible evidence for ~eV-scale sterile neutrino *Phys. Rev. D83, 073006 (2011)*

Rate Discrepancy

Average $\overline{\nu}_{e}$ rate of past experiments less than model expectation

More recently:

Data vs. model comparisons of energy spectrum, and variations with reactor fuel

Today's Talk

Contents of this lecture:

- Discuss the production and measurement of reactor antineutrinos
- Take a closer look at models of reactor antineutrino emission, and summarize recent progress
- Examine the consequences and potential future developments

Part 1: Reactor antineutrino production and measurement

Reactor Antineutrinos

Antineutrino Production:

- Fission of actinides produce unstable neutron-rich daughters
- Two daughter fragments average ~6 beta decays until stable

Reactor Flux Expectation

Standard approach to antineutrino flux prediction

Total Antineutrino Spectrum:

$$S(E_{\nu}) = \frac{W_{th}}{\sum_{i} (f_i/F)e_i} \sum_{i}^{istopes} (f_i/F)S_i(E_{\nu})$$

Reactor-specific:

- Reactor thermal power: W_{th}
- Relative isotope fission fractions: f_i

Energy released per fission: *e_i*.

V. Kopekin et al., Phys. Atom. Nucl. 67, 1892 (2004) 🚆

Antineutrino spectra per fission: *S_i(E_v) K. Schreckenbach et al., Phys. Lett. B160, 325 (1985) A. A. Hahn et al., Phys. Lett. B218, 365 (1989) P. Vogel et al., Phys. Rev. C24, 1543 (1981) T. Mueller et al., Phys. Rev. C83, 054615 (2011) P. Huber, Phys. Rev. C84, 024617 (2011)*

Typical parent fission rates vs. burnup in power reactor

Chin. Phys. C41, 13002 (2017)

Minor corrections: Non-equilibrium fuel, neutron capture on reactor materials, non-linear isotopes *Cogswell, Huber 2016, Conant, Mumm, Erickson 2018, Jaffke, Huber 2015*

Reactor Antineutrinos

Antineutrino spectra per fission of parent actinide

Detection Method

Inverse β-decay (IBD):

$$\overline{\nu}_e + p \to e^+ + n$$

$$\downarrow \\ n + {}^x Gd \to {}^{x+1} Gd + \gamma$$

Prompt positron:

Carries antineutrino energy___ $E_{e^+} \approx E_v - 0.8 \text{ MeV}$

Delayed neutron capture:

Efficiently tags antineutrino signal

Combination of prompt + delayed signals provides distinct signature

Example: Daya Bay Antineutrino Detectors

8 functionally identical detectors reduce systematic uncertainties

	3 zone cylindrical vessels				
	Liquid	Mass	Function		
Inner acrylic	Gd-doped liquid scint.	20 t	Antineutrino target		
Outer acrylic	Liquid scintillator	20 t	Gamma catcher		
Stainless steel	Mineral oil	40 t	Radiation shielding		

192 8 inch PMTs in each detector

Top and bottom reflectors increase light yield and flatten detector response

Example: Daya Bay Experiment

Discovered oscillation driven by θ_{13} mixing.

Latest Result: $4 \times 10^6 \overline{v}_e$

PRL 141, 2041805 (2018)

Reactor Antineutrinos: Measurements and Models - D. Dwyer

Absolute Reactor Flux

Daya Bay provides precise measurement of reactor flux

Consistent with average of past measurements. Inconsistent with model.

Daya Bay spectrum inconsistent with standard reactor models

Spectrum containing 3.5 million antineutrino interactions.

Particularly strong deviation 5-7 MeV

rrrr

BERKELEY LAE

a.k.a. 'The 5 MeV Bump'
→ More accurately, it is a shoulder.

Inconsistent with eV sterile neutrino.

Spectrum Discrepancy

Similar discrepancies observed by RENO and Double CHOOZ Experiments

Fuel Variation at Daya Bay

Fuel Variation at Daya Bay

Primary effect:

Refueling decreases ²³⁹Pu fission rate relative to ²³⁵U

Latest analysis:

Bin data in common bins of F_{239} (²³⁹Pu fission fraction).

Measure variation in antineutrino rate and spectrum versus fuel composition.

Phys. Rev. Lett. 118, 251801 (2017)

Rate versus Fuel

Average antineutrino rate: $\bar{\sigma}_f = (5.90 \pm 0.13) \times 10^{-43} \text{ cm}^2/\text{fission}$ First precise measurement of rate variation: $d\sigma_f/dF_{239} = (-1.86 \pm 0.18) \times 10^{-43} \text{ cm}^2/\text{fission}$

Not only is rate inconsistent, but slope also disagrees with model.

Rate versus Fuel

RENO observes similar dependence of rate versus fuel

Rate By Fission Parent

Use rate vs. fuel to extract antineutrino rate versus fission parent.

Include conservative 10% uncertainties on rates for minor fission parents (i.e. ²³⁸U, ²⁴¹Pu)

Conclusion:

²³⁹Pu rate is consistent with model
²³⁵U rate is inconsistent (-7.8%)

eV sterile hypothesis:

Would predict equal deficit for each fission parent.

→ Not consistent with Daya Bay observation (2.8σ).

First clear measurement of change of energy spectrum versus fuel composition.

Not yet sufficiently precise for relevant tests of models.

Also of interest to nuclear non-proliferation community.

Phys. Rev. Lett. 118, 251801 (2017)

Spectrum vs. Fuel

PRL 122, 232501 (2019)

PROSPECT: measures ²³⁵U spectrum at high-enriched uranium reactor

Spectrum shows slight tension with $\beta^{\text{-}}$ conversion model

Part 2: Details of Models of Reactor Antineutrino Emission

Method 1: Nuclear Summation

Method 2: β⁻ Conversion

Use cumulative β^{-} spectrum to predict corresponding \overline{v}_{e} spectrum

β⁻ Conversion

Б

BETAS PER FISSION

10

235₁,

KINETIC ENERGY OF BETAS IN

Conversion Method:

- Assume fission electron spectrum is composed of many 'virtual' beta decay branches of different Q-values.
- Iteratively fit electron spectrum with 'virtual' beta spectra, until spectrum is completely described.
- Calculate corresponding 'virtual' $\overline{\nu}_{e}$ spectra, including expected corrections.

Phys. Rev. C76, 025504 (2007) Phys. Rev. C84, 024617 (2011)

 Use known decay data (90%) with virtual branches (10%) to reduce uncertainty of nuclear corrections.

Phys. Rev. C83, 054615 (2011)

Sep. 21, 2019

Possible Origins?

What might cause the difference between the e⁻ and \overline{v}_e spectra?

Phys. Rev. D92, 033015 (2015)

- 1) Non-fission sources of antineutrinos
- 2) The forbidden nature of some beta decay transitions
- 3) ²³⁸U fission as a source of the shoulder
- 4) The relatively harder PWR neutron spectrum
- 5) A possible error in the in the ILL beta-decay measurements

Summation Revisited

Phys. Rev. 109, 202504 (2012)

Fission yields of daughter isotopes:

Daughter decay rate $R_i \simeq \sum_p R_p^f Y_{pi}^c$ Parent fission rate yield

Instantaneous Yield:

Probability of daughter isotope *i* direct production from fission of parent isotope *p*.

Cumulative Yield *Y*_{*pi*}^{*c*}**:**

Probability of daughter isotope *i* indirect production, either from initial fission, or via decay.

At Equilibrium:

Decay rate equals production rate.

ENDF/B.VII.1 database provides cumulative yields for >1300 fission daughter isotopes.

Summation: Beta Decays

Calculation of beta decay energy spectrum:

Decay Branches:

Isotope decays to one of multiple states, probability f_{ij}

Branch Spectra:

Spectra calculated including: Coulomb, radiative, finite size, weak magnetism corrections.

> Rely on nuclear databases e.g. ENSDF: Evaluated Nuclear Structure Data File

Nuclear Structure

Complex decays of neutron rich fission daughters.

Fission yield and decay branch uncertainties can be considerable.

Summation Revisited

Summation calculation unexpectedly agrees with reactor msmts.

PRL 114, 012502 (2015)

Only includes tabulated uncertainties.

But summation suffers from large unquantified uncertainties.

How do missing uncertainties not cause more tension with measurements?

→ Shape dominated by small number of prominent fission daughters.

Detailed $\overline{\mathbf{v}}_{\mathbf{e}}$ Spectrum Shape

Structure clearer when compared with smooth approximation F(E)

 $F(E_{\overline{\nu}}) = \exp(\sum_{i} \alpha_{i} E_{\overline{\nu}}^{i-1}) \quad \alpha = \{0.4739, 0.3877, -0.3619, 0.04972, -0.002991\}$

Dominant Branches

Eight decay branches dominate 5-7 MeV shape in this calculation.

Isotope	Q[MeV]	$t_{1/2}[s]$	$\log(ft)$	Decay Type	N[%]	$\sigma_N[\%]$
⁹⁶ Y	7.103	5.34	5.59	$0^- ightarrow 0^+$	13.6	0.8
⁹² Rb	8.095	4.48	5.75	$0^- ightarrow 0^+$	7.4	2.9
^{142}Cs	7.308	1.68	5.59	$0^- ightarrow 0^+$	5.0	0.7
⁹⁷ Y	6.689	3.75	5.70	$1/2^- \rightarrow 1/2^+$	3.8	1.1
⁹³ Rb	7.466	5.84	6.14	$5/2^- \rightarrow 5/2^+$	3.7	0.5
$^{100}\mathrm{Nb}$	6.381	1.5	5.1	$1^+ \rightarrow 0^-$	3.0	0.8
^{140}Cs	6.220	63.7	7.05	$1^- \rightarrow 0^+$	2.7	0.2
$^{95}\mathrm{Sr}$	6.090	23.9	6.16	$1/2^+ \to 1/2^-$	2.6	0.3

PRL 114, 012502 (2015)

Calculation predicts ~42% of rate in 5-7 MeV caused by these 8 beta decay branches. Are the fission yields and branching fractions accurate for these dominant branches?

Dominant Branches

Recent calculations also identify similar prominent branches.

Dominant Branches

Summation:

Databases suggest limited number of decays contribute the bulk of the emission

Addressing uncertainties for these prominent decays should improve confidence in summation model.

Reactor Antineutrinos: Measurements and Models - D. Dwyer

Inconsistent Databases

JEFF database, corrected with recent

~2% higher than measurements

Inconsistent with measurements

Consistent with beta conversion method

Calculated spectrum depends on which nuclear database is used.

ENDF vs. JEFF database

Potentially consistent with data, imprecise (~10%)

ENDF Spectrum:

Inconsistent with beta conversion method Potentially consistent with measurements

See also: arXiv:1807.09265

But model uncertainties are difficult to quantify!

Spectrum:

Reactor Antineutrinos: Measurements and Models - D. Dwyer

Nuclear Data Woes

Recent errors found in ENDF/B.vii thermal fission yield tables.

Forbidden Decays

Decay spectra may require correction for forbidden transitions

Phys. Rev. Lett. 112, 202501

Missing Decays

Fission daughter nuclei with unknown decays must be modeled.

~70% of daughters lack decay data, but only amount to ~5% of reactor yield. *Phys. Rev. D92, 033015 (2015)*

Pandemonium Effect

Existing nuclear data overestimates high-energy β^- feeding

Measurements missed gammas associated with low-Q decays PL B71, 307 (1977)

Reactor Antineutrinos: Measurements and Models - D. Dwyer

Improving Nuclear Data

TAS: Total absorption spectroscopy

Full calorimetery of gammas emitted during beta decay provides more accurate beta branching fractions.

Specifically overcomes the Pandemonium effect.

IGISOL (DTAS)

ORNL (MTAS)

Strong program of TAS measurements:

PRL 105, 202501 (2010), PR C87, 044318 (2013), PRL 115, 102503 (2015), PRL 117, 092501 (2016), PR C95, 024320 (2017), PR C95, 054328 (2017), PR C96, 014320 (2017), PRL 119, 052503 (2017)

IFIC (ROCINANTE)

Total Absorption Spectroscopy

Example: TAS Measurement of ¹⁴²Cs

Results in significant changes in β -decay spectra of ¹⁴²Cs.

Summation: Fuel Dependence

Summation predicts a fuel dependence consistent with measurement

After correcting for 3.4% excess rate, slope consistent with Daya Bay measurement

Spectrum variation consistent, but measurement has limited precision

PRL 120 022503 (2018)

Summation: Fuel Dependence

Summation (JEFF- and TAS-based) converging toward measured data, but uncertainties difficult to quantify

Fission Neutron Energy

Blame the fission neutron energy spectrum?

Fission e⁻ measurements:

Thermal neutrons on foils of ²³⁵U, ²³⁹Pu, ²⁴¹Pu

Fission $\overline{\mathbf{v}}_{e}$ measurements:

Mix of thermal, epithermal, fast neutron fission in commercial power reactor.

Could the differences in the fission neutron energy explain the e⁻ to $\overline{\nu}_e$ tension?

Method:

Use summation model to examine relative rate and spectrum change versus neutron energy Conservative assumption: use fast fission yields for epithermal neutron fission.

	LEU/Thermal IBD yield ratio				
Scenario	²³⁵ U	²³⁹ Pu	²⁴¹ Pu	LEU	
JEFF, default isotopes ENDF, default isotopes JEFF, all isotopes	1.001 1.003 1.001	0.997 1.000 0.999	0.998 0.998 1.000	0.999 1.001 1.000	

Conclusion: Summation displays insufficient variation to resolve e^- to \overline{v}_e tension

Phys. Rev. D97, 073007 (2018)

Summary

Fission and Nuclear Decay Measurements

Part 3: Implications and Looking Ahead

Detailed \overline{v}_e Spectrum Shape

Calculation predicts significant discontinuities in spectrum.

Detailed \overline{v}_e Spectrum Shape

Calculation predicts significant discontinuities in spectrum.

Reactor Spectroscopy?

Each edge identifies one significant decay branch.

Current detectors: Energy resolution: 6-8%/VE Unlikely to detect fine details

Detailed \overline{v}_e Spectrum Shape

Attempt to quantify structure in spectral measurements

Detailed $\overline{\mathbf{v}}_{\mathbf{e}}$ Spectrum Shape

Structure introduces model dependency to JUNO mass hierarchy

Reactor Antineutrinos: Measurements and Models - D. Dwyer

Summary

Particle physics successes using reactor antineutrinos:

- First v detection, distinct evidence for v oscillation, Δm_{21}^2 , θ_{12} , Δm_{31}^2 , θ_{13}

But discrepancies between measurements and models: β⁻ conversion models:

- Provide the most precise estimates of rate and spectra (~3%)
- Predicts ~6% higher flux than measurements (*i.e. the rate anomaly*)
- Energy spectrum inconsistent with measurements (*i.e. the 'bump'*)
- Predicts stronger rate variation versus reactor fuel burnup
- Tension between $e^{\text{-}}$ and $\overline{\nu_e}$ measurements seems unavoidable

Summation models:

- Rely on fission yields and decay data of >1000 isotopes
- Suffer from significant unquantified uncertainties (~10%?), inconsistent databases
- Potential consistency with measured $\overline{\nu_e}$ rate, rate vs. fuel, and spectra

Looking forward:

- Improved fission and decay data has potential to reduce summation uncertainties
- Reactor spectroscopy via high-energy resolution $\overline{v_e}$ spectrum measurement