Solar and geo-neutrinos: current status and future directions

Oleg Smirnov, JINR, Dubna

> INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 41st Course Erice Sicily: September 16-24, 2019

CNO-cycle

The CNO cycle (carbon-nitrogenoxygen) is a catalytic cycle. CNO cycle dominates in stars more massive than about 1.3 times the mass of the Sun. pp-chain reactions start occurring at temperatures around 4×10⁶K. A self-maintaining CNO chain starts at ~15×10⁶ K, but its energy output rises much more rapidly with increasing temperatures and at ~ 17×10⁶ K, the **CNO cycle becomes dominant. The** Sun has a core temperature of around 15.7×10⁶ K and only 1.7% of He-4 nuclei being produced in the Sun are born in the CNO cycle.

The simplest CN-cycle (CNO-I, or Bethe cycle or carbon cycle) was proposed by Hans Bethe in 1938 and, independently, in 1939 by Carl Friedrich von Weizsäcker).

Solar neutrino spectra

Solar neutrino experiments

$$v_{e} + {}^{37}Cl \rightarrow {}^{37}Ar + e^{r}$$
Homestake
$$v_{e} + {}^{71}Ga \rightarrow {}^{71}Ge + e^{r}$$
SAGE
$$Gallex/GNO$$

$$if the true for the true$$

600 t perchloroethylene (C_2CI_4) 1.5 km underground.

GaCl (metal) : 50-57 t

2.56 ± 0.23 SNU ~30% of SSM

Gallex+GNO+SAGE 66.1 ± 3.1 SNU ~50% of SSM

Solar Neutrino Unit, SNU= 1 event per 10³⁶ target atoms in 1 second

Calibration with artificial neutrino sources

Calibration with artificial neutrino sources

Baksan Experiment on Sterile Transitions

KamiokaNDE and SuperKamiokaNDE

Water Cherenkov detector KamiokaNDE-II, 1988, Japan (1000 m depth in the Kamioka mine)

SuperKamiokande (or SuperK) — updated (scaled) version of Kamiokande-II, located 180 miles to the north from Tokyo. Japan-USA collaboration.

Construction ended in 1996. 50 ktones of higly purified water. Equipped with 11146 PMTs

KamiokaNDE and SuperK results

Detector		Years, exposure	FV mass	Cover age	E _{Thr} MeV	Result [x10 ⁶ cm ⁻² s ⁻¹]
KamiokaNDE-II +III		87-90 90-95 2079 d	H ₂ 0 3 kt	20% 25%	7.0	2.82 ^{+0.25} -0.24 ±0.27
SuperK (50 kt)	I	96-01 1496 d	H ₂ 0	40%	5.5	2.380±0.024 ^{+0.064} -0.076
	11	02-05 791 d	22.5 kt	19%	7.0	2.41±0.05 ^{+0.16} -0.15
	ш	06-08 548 d	22.5 (>5.5MeV) 13.3 (<5.5MeV)	40%	4.5	2.404±0.039±0.053
	IV (T2K	08-18 1664 d (2014)	22.5 (>5.5MeV) 13.3 (4.5 <e<5.5)< td=""><td rowspan="2">40%</td><td rowspan="2">3.5</td><td>2.308±0.020±0.04 (2016)</td></e<5.5)<>	40%	3.5	2.308±0.020±0.04 (2016)
	phase)	2970 d	8.8 (<4.5MeV)			2.29±0.02±0.04 (2018)
	V (Gd)	2019		40%	3.5	
HyperK (0.26 Mt)		2027	0.19 Mt	40%	4.5	Project

SK(I-IV) in 2019 had in total 5805 days of data

Combined (TAUP-2019) : 2.33±0.04 [1.7%]

Missing neutrino were found by SNO (Sudbury Neutrino Observatory)

17.8m dia. PMT Support Structure 9456 20-cm dia. PMTs 56% coverage

12.01m dia. acrylic vessel

1700 tonnes of inner shielding H₂O

5300 tonnes of outer shielding H₂O

heavy water Cherenkov detector

surfac

10 neutrino events/day

Neutrino detection in heavy water Cherenkov detector

$$cc v_e + d \rightarrow p + p + e$$

- \bullet measurement of ν_e energy
- Weak directionality:

 $1-0.340\cos\theta$

NC
$$v + d \rightarrow p + n + v$$

• Measurement of the total ⁸B v flux • $\sigma(v_e) = \sigma(v_u) = \sigma(v_\tau)$

- Low statistics
- $\sigma(v_e) \approx 6 \ \sigma(v_\mu) \approx 6 \ \sigma(v_\tau)$
- Strong directionality:

 $heta_e \leq$ 18 $^{\circ}$ (T_e = 10 MeV)

SNO results

Ph as e		Target, mass	Method	Threshold [MeV]	Result [x10 ⁶ cm ⁻² s ⁻¹]
1	, 99-01	D₂0 1006 t	v_e +d → p + p + e ⁻ (CC)-1.4 MeV v_x +d → p + n + v_x (NC)-2.22 MeV	5.0	1.76±0.05±0.09 (CC) 2.39 ^{+0.24} - _{0.23} (ES) 5.09 ^{+0.44} - _{0.43} (NC)
	306.4 a		$\frac{v_x + e^- \rightarrow v_x + e^-}{(ES)}$		
11	01-04 391d	+NaCl 2t	³⁵ Cl+n → ³⁶ Cl+8.6 MeV (2-4 γ)	5.5	1.72±0.05±0.11 (CC) 2.34±0.23 ^{+0.15} -0.14 (ES) 4.81±0.19 ^{+0.28} -0.27 (NC)
I+II	Low energy threshold analysis (LETA: 3.5 MeV)			3.5	5.046 ^{+0.159} -0.152 ^{+0.107} -0.123 (NC)
III	04-06	+ ³ He counters	³ He + n → p + ³ H + 0.76 MeV	6.0	$1.67^{+0.05}_{-0.04} * 0.07_{-0.08} (CC)$ $1.77^{+0.24}_{-0.21} * 0.09_{-0.10} (ES)$ $5.54^{+0.33}_{-0.31} * 0.36_{-0.34} (NC)$

⁸B flux (5.25±0.16(stat)^{+0.11}_{-0.13}(syst))x10⁶ cm⁻²s⁻¹

Solar Neutrino Problem

- a large discrepancy between the predicted and measured fluxes of solar neutrinos:
 - Cl & KamiokaNDE \approx 1/3 of predicted
 - Ga: ≈1/2 of predicted

A lot of solutions have been proposed, now mainly of historical interest.

MSW/LMA has been established as the true solution of the SNP

BOREXINO (in operation from May,2007)

50 events/d/100t expected (v_e and v_{µ,τ} elastic scattering on e⁻) or 5·10⁻⁹ Bq/kg (typically: drinking water ~10 Bq/kg; human body in ⁴⁰K: 5 kBq) Low energy->no Cherenkov light->No directionality, no other tags-> extremely pure scintillator is needed ~1 Bq

Borexino (phase-II) results (2018)

Nature 562, pp.505-510 (2018)

Rates	Borexino new results cpd/100t	Uncertainty reduction	Expected HZ cpd/100t	Expected LZ cpd/100t
рр	$134 \pm 10^{+6}_{-10}$	11 -> 9 %	131.0 ± 2.4	132.1 ± 2.4
⁷ Be (862+384 keV)	$48.3 \pm 1.1^{+0.4}_{-0.7}$	4.7 -> 2.7 %	47.8 ± 2.9	43.7 ± 2.6
Pep (CNO fixed at HZ)	$2.43 \pm 0.36^{+0.15}_{-0.22}$	22 -> 16%	2.74 ± 0.05	2.78 ± 0.05
Pep (CNO fixed at LZ)	$2.65 \pm 0.36^{+0.15}_{-0.24}$	22 -> 16%	2.74 ± 0.05	2.78 ± 0.05
⁸ B (E _{e-} > 3MeV)	$0.223 + 0.015 - 0.006 \pm 0.006$	18 -> 8%	0.211± 0.025	0.173± 0.021
Hep (E _{e-} > 11MeV)	<0.002 (90% C.L.)		(8.0 <u>+</u> 2.2) x10 ⁻⁵	(7.5 <u>+</u> 0.9) x10 ⁻⁵
CNO	< 8.1 (95% C.L.)		4.91 <u>+</u> 0.56	3.62 <u>+</u> 0.37

Solar metallicity problem

 Global fit to all solar + Kamland data (including the new ⁷Be result from BX)

$$f_{\rm Be} = \frac{\Phi({\rm Be})}{\Phi({\rm Be})_{\rm HZ}} = 1.01 \pm 0.03$$
$$f_{B} = \frac{\Phi({\rm B})}{\Phi({\rm B})_{\rm HZ}} = 0.93 \pm 0.02$$

• a hint towards the HM :

LZ is excluded by BX data at 96.6% C.L. (1.8 σ) level

theoretical errors are dominating

$$R \equiv \frac{<^{3} \text{He} + {}^{4} \text{He} >}{<^{3} \text{He} + {}^{3} \text{He} >} = \frac{2\phi({}^{7}\text{Be})}{\phi(\text{pp}) - \phi({}^{7}\text{Be})}$$

R(HZ)=0.180±0.011 R(LZ)=0.161±0.010

From the pp and ⁷Be fluxes measurement

MSW/LMA : electron neutrino survival probabilities

High metallicity SSM

Low metallicity SSM

MSW errors (1σ) are shown by rose band

Total error on P_{ee}:

- for pp and pep neutrinos, contribution of experimental errors dominates (easy to predict, difficult to measure)
- for ⁷Be and ⁸B theoretical predictions of the Solar model are worse than measurements

Survival probabilities from all solar v results

"Upturn" predicted by standard MSW is not seen yet.

SNO+ water phase; 114.7 days

Phys.Rev. D 99, 012012 (2019)

80 Data Sig. + Bkg. Fit 70 Syst. Uncertainty Counts / 114.7 Days / 0.05 60 $5.0 < T_{o} < 15.0 \text{ MeV}$ 50 40 30 -1.0 -0.8-0.6-0.4 -0.2 0.0 0.2 0.4 0.6 0.81.0 $\cos\theta_{sun}$ 45 Data - Sig. + Bkg. Fit 40 Syst. Uncertainty Counts / 114.7 Days / 0.05 35 $6.0 < T_o < 15.0 \text{ MeV}$ 30 25 20 15 10 -0.6 -0.4 -0.2 0.2 0.4 -1.0-0.80.00.6 0.8 1.0 $\cos\theta_{sun}$

 $\Phi_{^{8}B} = 5.95^{+0.75}_{-0.71}(\text{stat})^{+0.28}_{-0.30}(\text{syst}) \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$

Compatible with SNO measurement

Source:Nakano@TAUP-2019

SuperK : first Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation

Phys.Rev.Lett. 112 (2014) no.9, 091805

Non-standard interactions

The absence of the visible upturn triggered speculations on NSI

NSIs modifies Pee...

... and cross sections

Constrains on NSI

arXiv:1905.03512

Effective magnetic moment of Solar neutrino

Phys. Rev D 96, 091103(R) (2017)

Borexino is spectroscopical detector.

Solar neutrino analysis (spectral fit) is performed assuming SM cross sections The shapes can be adjusted to take into account any non-standard interactions (NSI), including neutrino EM interactions

Limits on mm of neutrino flavours and mass eigenstates

In Solar neutrino experiments we measure:

 $(\mu_{\nu})_{eff}^{2} = \sum_{\alpha} P_{e\alpha}(\mu_{\nu})_{\alpha}^{2}$

In frames of the MSW/LMA solution:

$$\mu_{eff}^{2} = P^{3\nu} \mu_{e}^{2} + (1 - P^{3\nu})(\cos^{2}\theta_{23} \mu_{\mu}^{2} + \sin^{2}\theta_{23} \mu_{\tau}^{2})$$

$\mu_{\nu_e} < 3.9$		GEMMA:	$\mu_{\nu_e} < 2.9$	All @90% C.L.
$\mu_{\nu_{\mu}} < 5.8$		LSND:	$\mu_{\nu_{\mu}} < 68$	units of $10^{-11} \mu_B$
$\mu_{ u_{ au}} < 5.8$		DONUT:	$\mu_{ u_{ au}} < 39000$	
Mass eigenstates	•	$ \mu_{11} \le 3.4$	$ \mu_{22} \le 5.1$	$ \mu_{33} \le 18.7$
basis:		$ \mu_{12} \le 2.8$	$ \mu_{13} \le 3.4$	$ \mu_{23} \le 5.0$

Astropysics: $\mu_{\nu}^{2} = \sum_{\alpha,\beta} |\mu_{\nu}^{\alpha\beta}|^{2} < 3 \cdot 10^{-12} \mu_{B}$

Borexino no diurnal variations of ⁷Be neutrino flux

"negative" result on day/night assimetry with 3 years statistics (380.63 "nights" + 360.25 "days") is in agreement with MSW/LMA predictions:

 $ADN = \frac{N - D}{N + D} = 0.001 \pm 0.012(stat) \pm 0.007(syst)$

G. Bellini et al., Phys. Lett. B 707 (2012).

Seasonal modulations of ⁷Be neutrino flux

M. Agostini et al. / Astroparticle Physics 92 (2017) 21-29

The duration of the astronomical year is measured from underground using neutrino!

Key to the Solar metallicity : CNO neutrino flux

Expected spectrum assuming ν (CNO) HZ flux and other rates from last solar analysis

Main background from ²¹⁰Bi : ~20 cpd/100 t

Measure ²¹⁰Bi with few counts precision \rightarrow

constrain it in the spectral fit \rightarrow extract the CNO flux.

Predictions:

- HZ: 4.91±0.56 cpd/100 t
- LZ: 3.62±0.37 cpd/100 t

Another background in the region of sensitivity is pepneutrino flux. Can be constrained through pp/pep ratio, using theoretical prediction for pp (luminosity constraint) or pp measured value.

Hardware solution for thermal stabilization : thermal insulation of the external tank

 $^{\rm 210}{\rm Po}$ in std FV

Hemishell Analysis

day 1300: insulation (summer 2015)

Hemi-shell #27

Hemi-shell #26

CNO sensitivity

Depends on both ²¹⁰Bi and pep-neutrino rates.

Assumed that ²¹⁰Bi will be measured (10-20%) and

pep-rate can be constrained by constraining pp/pep ratio in the fit.

v(CNO) median p-value (LZ/HZ hypothesis)

SNO+

780 tons of Linear Alkyl Benzene (LAB)

6000 m.w.e. rock shielding : 3 μ /hour.

⁸B neutrino : 1 yr simulations

SNO+ Solar neutrino phase

⁷Be and ⁸B neutrinos
pep & CNO neutrinos: U and Th < 10⁻¹⁷ g/g.
²¹⁰Bi is the most important
3600 pep events/(kton-year), for electron recoils >0.8 MeV
goal: ±5% total uncertainty after 3 years (including systematic and SSM)
CNO measurement : ±10% after 3 years.

JUNO Jiangmen Underground Neutrino Observatory

Solar neutrino

JUNO is large volume LS detector, bigger than successful Borexino with better resolution, but at shallower depth. Radiopurity?

pep ν

 ν

28

4.5

7.5/5.4/0.1

Remaining ? in Solar neutrino physics

- Solar metallicity problem; will it be solved by Borexino?
- CNO neutrino flux measurement
- "Upturn" in the ⁸B spectrum. Is it a hint for the NSIs or just a statistical fluctuation?
- The "tension" between SK and KL parameters
- The observation of the D/N variations of the ⁸B signal still missing

Geo-neutrinos

²³⁸U, ²³²Th and ⁴⁰K (⁸⁷Rb, ²³⁵U) release heat together with antineutrinos

$$\Phi_{\overline{\nu}} \sim 10^6 \text{ cm}^{-2} \text{s}^{-1}$$

Heat flow through the surface of the Earth

"Earth's surface heat flux", J. H. Davies and D. R. Davies (2010) 47±2 TW

38 347 measurements of the thermal flux In agreement with previous estimations based on incomplete set of the same data 46±3 TW[Jaupart et al., 2007] and 44±1 TW [Pollack et al., 1993]

	23 - 45	75 - 85
mVV m ⁻	45 - 55	85 - 95
	55 - 65	95 - 150
	65 - 75	150 - 45

10 - 15

Earth's surface heat flow 47 ± 2 TW

total R: 20 ± 4

Urey=R/Tot

(0.4 TW) Tidal dissipation Chemical differentiation

Primordial heat sources: Gravitational energy Short-lived isotopes decays ²⁶Al (7.17×10⁵ yr)

Open questions

- what is the radiogenic contribution to the total heat generated by the Earth?
- how much U, Th and K are distributed in the Earth's crust and mantle?
- what are the planetary Th/U and K/U mass ratios?
- how U and Th are distributed in the Earth's crust and mantle?

Open questions

- is the mantle chemically uniform, layered, or more complicated?
- are there mantle reservoirs enriched in U and Th?

LLSVPs by seismic tomography

(superwells, thermochemical piles, or hidden reservoirs)

Open questions

- is there any georeactor or hidden excessive ⁴⁰K in the Earth's core, as suggested by some theoreticians?
- are the geochemical Bulk
 Silicate Earth models consistent with geoneutrino data?
- which of the proposed Earth models will fit the observed geoneutrino flux?

Earth models and radiogenic heat

Sramek et al., Earth Planet. Sci. Lett., vol. 361, pp. 356-366, 2013

Cosmochemical (Low-Q) – based on the enstatine chondrites (E-chondrites), the only group of chondrites identical to the Earth composition

Geochemical (Med-Q) – based on carbonaceous chondrites CI with absolute abundancies from petrology

Geophysical/geodynamical (High-Q) parametric convection – balancing mantle viscosity and heat dissipation

Secular cooling Mantle Lithosphere

$H_{SC} = H_{rad}^{mantle}(U+Th+K) = H_{rad}^{LS}(U+Th+K) =$

L&K T

J.

~20 TW

~10 TW

~30 TW

A M&S W P&O T&S BX

Models : mantle contribution

Model	Full flux,TW	Mantle, TW
Cosmochemical (Low-Q)	11 ± 2	3 ±2
Geochemical (Med-Q)	20 ± 4	12 ±4
Geophysical (High-Q)	33 ± 3	25 ±3

Two detectors measured geo-

Borexino: 300 t LS (3500 mwe)

KamLAND: 1 kton LS (2200 mwe)

Detection of geo(anti)neutrino

 $\Phi_{\bar{v}} \sim 10^6 \text{ cm}^{-2} \text{s}^{-1}$

- Earth (in construst to the Sun) emits antineutrino.
- Part of antineutrino in the U and Th decay chains is emitted with E>1.8 MeV (IBD threshold)
- Contributions from U and Th are distinguishable
- Oscillations are averaged: <Pee>≈0.56±0.02

Borexino-2019: 154 candidates

52.6 +9.4/-8.6(stat) +2.7/-2.1(syst) events (Th/U=3.9) +17/-15 % +18.3/-17.2 %

arXiv:1909.02257

KL energy spectrum : Period 3 (0.9-2.6 MeV)

Livetime: 1259.8 days 2016 Preliminary Result

KL & Borexino results

 2.4σ from LowQ

Radiogenic heat: Borexino

Current & future experiments

Extracting mantle signal from combined data

Directionality

Highlights

- Geoneutrinos are a tool to study the deep Earth and new generation of experiments are needed for firm geological conclusions
- Borex: 52.6^{+9.4}_{-8.6}(stat)^{+2.7}_{-2.1} (sys) events (^{+18.3}_{-17.2}%)
 KL : 164⁺²⁸ ar events (17%)
- KL : 164⁺²⁸-25 events (17%)
- Mantle signal: BRX: 21.2^{+9.6}-9.1 TNU; P(0)<0.01 KL : 8.2^{+6.6}-6.0 TNU
- KamLand: Th/U ratio: $M(Th)/M(U)=4.1^{+5.5}$

Experiment: events/yr

both with

fixed M(Th)/M(U) ratio

- BRX : 4.2
- KL : 14
- SNO+ : 25
- Jinping: 100
- JUNO : 400