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Introduction 0 decay

 particle ↔ anti-particle have opposite electric charge,  has no charge
 lepton number only 'accidentally' conserved in Standard Model of particle physics
→  possible:  neutrino = anti-neutrino  (Majorana particle)
→  look for processes which can only occur if  is Majorana
      best chance: neutrinoless double beta decay
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76Ge →  76Se + 2 e-0 decay, L=2 Ge detector

- 76Ge 7.8% → 87% enr.
- best energy resolution
  in comparison



  

    the starting idea: reduce background
MC spectrum with 6 signal evts, bkg 0.1/keV

MC spectrum with 6 signal evts, bkg 1/keV

Nbkg=M⋅t⋅B⋅ E

M = mass of detector ~ 35 kg for GERDA
 t  = measurement time ~ 3 yr
 A = isotope mass per mole = 75.6 g/mol
NA= Avogadro constant

  a = fraction of  isotope ~ 0.86
   = detection efficiency ~ 0.7
  B = background index in units cnt/(keV kg y) ~10-3

E = energy resolution = energy window size ~ 6 keV
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Experimental sensitivity

want to be “background free”  Nbkg < 1 inE
     for the total exposure of experiment
→ GERDA bkg goal 0.001 cnt/(keV kg yr)



  

    background sources

sources: a) cosmic rays (p,n,) →  underground like LNGS, …
                   different depth requirements ( flux) for different experiments
               b) neutrons from (,n)&fission  and  spallation induced by 
              c)  from radioactive decay chains 238U,  232Th

1. shield  c) from the rock + concrete + steel = “external bkg”:
     → use clean materials, example of  232Th activities  [Bq/kg]:
     1000  - steel,  <1  - Cu,  <1 - water, ~0  liquids like noble gases or  organic scintillator 
    shield  b)  with a  neutron moderator like water, borated PE

2. avoid contaminations in  “close materials and intrinsic”
   → screen & select materials like cables, supports, …
    big effort for many collaborations, shared knowledge about good materials,
    select   candidate isotope with large Q value (above 2.6 MeV),
    reduce time “above ground” for materials like Cu, Ge, ...

3. identify background events (multi-dim. selection) →
          localize interactions (surface events, multiple interactions)
          identify particle type ( versus )
          'measure' all energy depositions (active veto) 
          ...



  

    liquid nitrogen/argon + water shield

basic idea of Gerd Heusser:
  Ann. Rev. Nucl. Part. Sci. 45 (1995) 543.
  use liquid nitrogen for shielding,
  larger enough to shield ‘external bkg’
  → “bare” Ge detectors in liquid

  GENIUS + GEM ideas around yr 2000

2004: GERDA LOI arXiv:hep-ex/0404039 
  use nitrogen or argon + water
  
2005: design for Cu cryostat in Hall A of LNGS
          long and intense safety discussions

LN2 boiling
in water bath

GERDA LOI



  

    the steel cryostat
May 2006: steel + internal Cu shield: luckily Th contamination <10% of assumed value!



  

    the steel cryostat
March 2008: cryostat arrives at LNGS (took 2 yr instead of 1 yr)
→ building water tank + clean room + … around it  afterwards



  

    6 April 2009

the life of many people destroyed in a min

no damage in the underground LNGS lab
→ resumed work after few months



  

    May 2010: first detectors in GERDA
first spectrum after a few days

huge  peak at 1525 keV
        about 1 cnt/(kg d)
high background at Q 

had ignored  component of 42K
        & 42K is charged
        & 42Ar content higher than
           in literature 

solution: operate detectors in
Cu foil containment / later nylon

start data taking Dec 2011



  

    Ge detectors

coaxial detectors segmented detector point contact detector

- need enrichment in 76Ge: T
1/2

 sensitivity  proportional to  isotope fraction

   GeF
4
 in gas centrifuges is a standard process for enrichment, 

  enriched in 72Ge is used in semi-conductor industry, 
  nowadays 2 suppliers, initially only ECP in Russia, 
  typical enrichment from 7.8% → 86% or higher → sensitivity ~11x

- GERDA Phase I:  18 kg of existing detectors from pioneering experiments
  Heidelberg-Moscow and IGEX

- Phase II: new detectors from newly purchased enriched Ge (bought 35 kg)
  But what type of detector?



  

    Phase II detector types

coaxial detectors segmented detector point contact detector

signal          = 2 e- →  localized energy deposition in bulk = single site event
background =  multiple Compton scattered   or   on detector surface

select detector type that can reject background due to the time profile of the signal

cost & ease of operation & background suppression
  → new detectors are point contact type = BEGe  (broad energy germanium) 

n+ 

p+

4 kV

FADC



  

   BEGe detector

potential 

field strength E

external voltage intrinsic impurities ~1010/cm3 sum

from
 JIN

S
T

 6 ( 2011) P
03005

current signal=q⋅v⋅∇Φ

q= charge, v = velocity
(Shockley-Ramo theorem)

depends on external potential  (only)



  

→ maximum current / energy (= A/E)
to discriminate multi-site vs single-site

Note: also good for  and  surface events!!!
p+:  electron drift → larger drift v → larger A/E
n+:  p-n contact region → electric field small → diffusion → longer drift → A/E smaller

    BEGe pulse shape analysis



  

BEGe detectors
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 (surface) events removed
 lines suppressed by factor ~6 

    0 proxies =   &
     Double Escape Peak of 2615 keV   
     ( + A→ e+ e-  with  2x511 keV escape) 

0 signal efficiency 87±2 %

2 acceptance 85−1
+2 %

   BEGe pulse shape performance



  

   Phase II: LAr scintillation light readout

7 strings in 
nylon cylinder

7 bottom PMT

9 top PMT

810 fibers read out 
by 90 SiPM → 15 ch

start Phase II  Dec 2015



  

   background suppression

latest (2018) unblinded data set  54 kg yr Phase II exposure (coax + BEGe)

background level  ~6x10-4 cnt/(keV kg yr)  for coax and BEGe detectors
reached goal of Phase II,  “background-free” until design exposure of 100 kg yr, Nature 544(2017)47 

blind analysis: - events within Q
bb

 ±25 keV are removed from normal data stream,

                       - fix all analysis cut
                       - then apply full analysis to possible events in the blinded window

D
O

I:10. 1126/s cience. aav861 3



  

   background model arXiv:1909.02522

model 228Th and 226Ra background using screening results – works well
empirical model for  background and 42K contribution, some addition 40K needed



  

   statistical analysis

Bayesian frequentist

likelihood → construct prob. intervals
Fedlman/Cousins Phys.Rev. D57 (1998)3873

makes prob statement for physics quantity,
but depends on prior → maybe strong effect

makes NO statement about physics,
confidence interval: for  

1
 < 

true
 < 

2
 

  → 90% of experiments measure “n”

P(physics | data)

L(data | physics)

90%, bkg=3



  

   frequentist analysis
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systematic = uncertainty of  peak position, width, reconstruction efficiency

1) Likelihood function (conceptual)

2) profile likelihood                                                                    → comparing 2 hypothesis

3) test statistic  t (1/T
1/2

)  = -2 ln 
for large number of events  t  follows a  distribution for 1 degree of freedom (Wilks’ theorem),
     not for GERDA

4) construct confidence interval 
   generate toy MC spectra for every “true” 1/T

1/2
 and find the 90% interval 0 < t < t

90

    

b
k
 = background & systematic

constrain to physical allowed range (signal>0, bkg > 0)



  

   frequentist analysis (II)

90% limit test statistic

data test statistic distribution

hypothetical test statistic if one
event would have energy 2039 keV

90% limit of GERDA 2018 data

for sensitivity: generate many toy MC spectra assuming NO signal
→ sensitivity = median of the 90% limits

90% quantile 2 distribution



  

   frequentist analysis (III)

alternative: for every t value of 1/T
1/2 

 calculate p-value = quantile of  test statistic distribution

sensitivity = median expected limit assuming NO signal



  

  latest results (2018)

bkg goal 10-3 cnt/(keV kg yr) → “background-free” until 100 kg yr

limit sensitivity (no signal)

Bayesian 90% CI
flat prior in 1/T

0.8 x 1026 yr 0.8 x 1026 yr

frequentist 90% CL 0.9 x 1026 yr 1.1 x 1026 yr

no  signal

personal advice:
use frequentist sensitivity
for T

1/2
  “interpretation”

T
1/2

 limits



  

   present

NIMA 665 (2011) 25

normal
coax

inverted
coax p+

p+

added  5 Inverted-Coax detectors in 2018
                               avg  mass ~ 3 x BEGe
→ similar bkg & energy resolution as BEGe

reach design exposure 100 kg yr end of 2019

current GERDA detector configuration



  

   future: LEGEND

“Large Enriched GErmanium Neutrinoless Double beta” collaboration formed in 2016
LEGEND-200:    200 kg  in existing GERDA infrastructure at LNGS, ~ 1027 yr sensitivity
LEGEND-1000:  1000 kg experiment,  realization depends on US-downselect, ~ 1028 yr

L200 design:
  14 strings of inverted-coax det. in ring (+ 2 strings in center)
  surrounded by fibers+SiPM  

approach:
  combine the best solutions of Majorana & GERDA & others
  minimize “dead” material: larger detectors
  better electronics
  more light
 
goal:
  background goal  ~2 x 10-4 cnt/(keV kg yr) (1/3 current bkg)
  for 1000 kg yr  exposure: T

1/2
  sensitivity  ~1 x 1027 yr

status:
  start data modification in 2020
  first data in 2021
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