Double Beta Decay and Lepton Number Violation

Neutrino Mass – See Saw ?

$$\begin{array}{cccc} & \psi_{L}^{c} & m & \psi_{R} \\ \hline & & & & \\ \hline & anti-particle & particle \\ + & M_{R}^{-} \overline{\nu}_{L}^{c} \nu_{R} + M_{L}^{-} \overline{\nu}_{L} \nu_{R}^{c} \end{array}$$

exeptional small neutrino mass could be understood by seesaw mechnism if neutrino is a Majorana particle

 $\mathbf{v}_{\mathbf{M}} = \mathbf{v}_{\mathbf{N}}$

v has no charge \Rightarrow can be Majorana-particle \Rightarrow can explain small **v** – mass (even with normal m_D)

and $\Delta L \neq 0$

- \Rightarrow heavy right handed partner
- \Rightarrow decays in early Universe
- \Rightarrow could help to explain Matter Antimatter imbalance

Neutrino is a normal Fermion, it just happend to have no charge

$$\mathbf{v}_{\mathbf{M}} \stackrel{?}{=} \mathbf{v}_{\mathbf{M}}^{\mathbf{c}}$$

Search for Neutrino-less Double Beta Decay $\Lambda L \neq 0$

easiest but not easy way to see

if $\boldsymbol{\mathcal{V}}$ are Majorana-type

- ⇒ checks Majorana character
- \Rightarrow very sensitive to m_v

Double Beta Decay and Lepton Number Violation $\Delta L \neq 0$

n

easiest but not easy way to see

if V are Majorana-type

mid term: **a few 10²⁶ yrs** ($m_{\beta\beta} \sim 40-100 \text{ meV}$) long term: **a few 10²⁷ yrs** ($m_{\beta\beta} \sim 10-20 \text{ meV}$)

Double Beta Decay and Lepton Number Violation $\Delta L \neq 0$

n

Double Beta Decay and Lepton Number Violation $\Delta L \neq 0$

easiest but not easy way to see

if $\boldsymbol{\mathcal{V}}$ are Majorana-type

mid term: a few 10^{26} yrs ($m_{\beta\beta} \sim 40-100$ meV) long term: a few 10^{27} yrs ($m_{\beta\beta} \sim 10-20$ meV)

next generation experiments $(m_{\beta\beta} \sim 20 \text{ meV})$ have a high discovery potential

cumulative probability for $m_{\beta\beta} > 20$ meV sensitivity is

> 95% inverted ~ 50% normal mass hierarchy

high discovery potential for IH and NH - not hierarchy, but m_v is important -

 $\Lambda \downarrow \neq 0$ Double Beta Decay and Lepton Number Violation

arXiv 1509.00423v1

Search for Neut

n

 $\Delta L \neq 0$

Ge detectors	GERDA Majorana LEGEND	very good ΔE (narrow ROI)
liquid noble gas	EXO	large detector messes
Xe	nEXO	large detector masses
loaded liquid	KamLAND-Zen	self shielding
scintillator Xe. Te	KamLAND2-Zen	
	SNO+	
gaseous detectors	SuperNEMO	
Xe, Se,Nd,Ca	NEXT	tracking
	PANDA - X	
CdZnTe detectors	COBRA	
cryo bolometers Te	CUORE	larger variety of isotopes
cryo + light Te, Mo	Cupid, AMoRe	
competetive limits	running	in preparation R&D and future projects

liquid Xenon TPC enriched in ¹³⁶Xe (80.6 %), charge and light detection

 $\Delta L \neq 0$

liquid Xenon single TPC **5000 kg enriched IXe** expected to be at **SNOLAB** improved performance: energy and position resolution

R&D on Ba-tagging

goal $T_{1/2}^{0\nu\beta\beta} > 9,2\cdot 10^{27}$ yr exclusion 5,7\cdot 10^{27} yr discovery

background in ROI ~ 0.6 / FWHM·t_{isotope}·yr

arXiv 1710.05075

Andreas Piepke Sunday 9:00h

Liquid Noble Gases – Panda X / DARWIN

PANDA-X II at Jjinping / China

sensitivity study for DARWIN multiton liquid Xenon detector

both so far natural Xenon mainly direct WIMP- Dark Matter search

∆L ≠ 0

DARWIN Collaboration, JCAP 1611 (2016) 017

$\Delta L \neq 0$

high pressure TPC + scintillation enriched Xe tracking

NEXT at Canfranc / Spain

10 kg prototype nat-Xe running at Canfranc 100kg comissioning in 2019

5 y goal $T_{1/2}^{0\nu\beta\beta} > 9.8 \cdot 10^{25} \text{ yr}$

R&D on Ba tagging ton scale $T_{1/2}^{0\nu\beta\beta} > 1.5 \cdot 10^{27}$ yr

PANDA X III / China

 $\Delta L \neq 0$

3 m diam. ballon: **liquid scintillator** loaded with enriched Xenon inserted into KamLAND

 $\Delta E \sim 250 \text{ keV FWHM}$

results: 383 kg Xe / 110 kg_{isotope} in FV $\sim 600 \text{ kg} \cdot \text{yr}$ $T_{1/2}^{0\nu\beta\beta} > 10.7 \cdot 10^{25} \text{ yr}$ sensitivity 5.6 $\cdot 10^{25} \text{ yr}$ background in ROI ~ 120 / FWHM $\cdot t_{isotope} \cdot \text{yr}$

starting: KamLAND Zen 800

750kg Xe larger, cleaner ballon goal sensitivity $T_{1/2}^{0\nu\beta\beta} > 4.6\cdot10^{26}$ yr background ~ 10 / FWHM·t_{isotope}·yr

Update @ TAUP 2019

running since Jan 2019 prelim.results:

sensitivity $T_{1/2}^{0\nu\beta\beta} > 0.8 \cdot 10^{26} \text{ yr}$ data $T_{1/2}^{0\nu\beta\beta} > 0.4 \cdot 10^{26} \text{ yr}$ background ~ 60 / FWHM·t_{isotope}·yr plan: KamLAND2: 1000 kg

Liquid Scintillator - SNO+

infrastructure at SNOLAB

Phase I: acrylic vessel filled with LS + 4000 kg of nat-Te (~30% Te-130)

LS filling 2019 Te loading 2020

sensitivity goal $T_{1/2}^{0\nu\beta\beta} > 1.9 \cdot 10^{26}$ yr

Phase II: more Te, better FWHM

THEIA project: 50 kton water-based liquid scintillator solar-v will be dominant background

Tracking - SuperNEMO

$\Delta L \neq 0$

tracker calorimeter

at Modane underground lab

thin foils containing isotope (Se...)

- e⁻ tracking => event topology
 - background
 - sensitivity to $0\nu\beta\beta$ mechanism

predecessor NEMO-3 measured limits for several isotopes: Mo, Nd, Ca, Cd, Te, Zr, Se

 $Mo T_{1/2}^{0\nu\beta\beta} > 1.1 \cdot 10^{24} \ yr \qquad \text{PRL 95 182302}$

SuperNEMO demsonstrator starting 7kg Se; 2.5 yrs goal $T_{1/2}^{0\nu\beta\beta} > 6.10^{24}$ yr

potential full extension: 20 modules 100 kg Se, 5 yrs: **goal** $T_{1/2}^{0\nu\beta\beta} > 10^{26}$ yr

$\Delta L \neq 0$

calorimetry at mK temperature

in natural TeO₂ crystals ¹³⁰Te (30%)

CUORE 750 kg TeO₂ (206 kg 130 Te) 988 crystals

results 2019:

369,9 kg.yr (103 kg·yr ¹³⁰Te)

 $\Delta E \sim 8 \text{ keV FWHM}$

 $T_{1/2}^{0\nu\beta\beta} > 2,3.10^{25} \text{ yr}$

background in ROI ~ 450 / FWHM·t_{isotope} · yr

goals:

goal sensitivity

 $T_{1/2}^{0\nu\beta\beta} > 9.5 \cdot 10^{25} \text{ yr}$ background

~ 180 / FWHM·t_{isotope}·yr

potential upgrade with calorimetry + light CUORE => CUPID

CUPID

CUORE detectors + scintillation/cerenkov read out for α discrimination possible crystals: TeO₂, Li₂MoO₄, ZnSe

very first results CUPID-0: 9,95 kg·yr with Se, $T_{1/2}^{0\nu\beta\beta} > 3,5\cdot 10^{24}$ yr

> background in ROI ~ 120 / FWHM·t_{isotope}·yr ΔE ~ 20keV FWHM can be improved a lot

 $\begin{array}{l} \textbf{CUPID - 1t goal} \\ sensitivity \\ T_{1/2}{}^{0\nu\beta\beta} > 2.1\cdot10^{27} \mbox{ yr for Mo} \\ background in ROI \\ \sim 0.1 \ / \mbox{ FWHM-t}_{isotope} \mbox{ yr} \end{array}$

Cn · Ψ) 20 arXiv: 1802.07791 Update: TAUP 2019 5 0 2000 4000 6000 8000 10000

Energy (keV)

AMORE @ Yangyang UGL Korea goal

sensitivity $T_{1/2}^{0\nu\beta\beta} > 3.10^{26}$ yr for ¹⁰⁰Mo 250kg·yr exposure

AMORE-Pilot results $2kg CaMoO_4$, 0,3 kg*yrs exposure still very high background $T_{1/2}^{0\nu\beta\beta} > 9,5\cdot 10^{22} \text{ yr}$

CANDLES @ Kamioka / Japan ⁴⁸Ca hightes Q-value 4,27MeV, lowest abundance 0,187%

 $\begin{array}{l} 305 \text{ kg CaF scintillator detectors} \\ \text{ in liquid scintillator} \\ \text{result from 131 days} \\ T_{1/2}{}^{0\nu\beta\beta} > 6,2\cdot 10^{22} \text{ yr} \end{array}$

working on scintillating bolometers first demonstration results

Ge Semiconductor - MAJORANA

Ge detectors Cu/Pb shielding

Sanford Lab , USA 44.1 kg ⁷⁶Ge (88%) running

PRC 100 025501 (2019)

results

26 kg∙yr

 $T_{1/2}^{0\nu\beta\beta} > 2.7 \cdot 10^{25} \text{ yr}$

background in ROI 18 / FWHM·t_{isotope}·yr

GERDA / LEGEND

$$\Delta L \neq 0$$

Bi-214

2200

pulse shape discrimination multi site and surface event recognition

GERDA results

LAr veto +

background 250 times lower compared to Heidelberg-Moscow Exp. (~10y)

makes sense to grow larger (background goal for LEGEND 200 almost reached)

new collaboration formed LEGEND Majorana + GERDA members + others

use GERDA concept and staged approach to 1000kg

 \Rightarrow one worldwide collaboration on ⁷⁶Ge

LEGEND 200: first 200kg in GERDA setup @ Gran Sasso

• starting 2021

sensitivity $> 10^{27}$ yr

 $\Lambda \downarrow \neq 0$

- ⁷⁶Ge available for 190kg of detectors
- funded by NSF, INFN, MPI, BMBF

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

sensitivity $> 10^{28}$ yr

LEGEND 1000: 1000kg phase depends on US down selection process same for nEXO

Bernhard Schwingenheuer Friday 9:00 h

 $\Delta L \neq 0$

taken from M.Agostini @ TAUP 2019

∆L ≠ O

taken from M.Agostini @ TAUP 2019

ΔL ≠ O

taken from M.Agostini @ TAUP 2019

ΔL ≠ O

taken from M.Agostini @ TAUP 2019

∆L≠0

low background essential for discovery potential

