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Anisotropic radial flow is described by the
Fourier coefficients of the azimuthal particle
distributions w.r.t. the reaction plane
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EXPANDING FIREBALL

the evolution lasts about
t~10-20 fm/c ~ 102 s

initial temperature is about
T ~ 300-600 MeV ~ 102K

Quark-Gluon Plasma (QGP)

“almost perfect fluid” with
very low viscosity and the
formation of collective flows




\ ¥ QGP initially expected only in high energy collisions of two heavy ions
> 3 Small colliding systems initially regarded as control measurements
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PHSD: Parton-Hadron-String Dynamics

A consistent non-equilibrium transport approach to study
heavy ion collisions (HICs) on a miscoscopic level

Cassing and Bratkovskaya, PRC 78 (2008) 034919; NPA&31 (2009) 215
Cassing, EPJ ST 168 (2009) 3; NPA856 (2011) 162
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GOAL
study the phase transition from hadronic to partonic matter and the
properties of the quark gluon plasma from a microscopic origin
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nucleon-nucleon collisions between the two incoming nuclei
lead to the formation of strings that decay to pre-hadrons



PHSD: Parton-Hadron-String Dynamics

A consistent non-equilibrium transport approach to study
heavy ion collisions (HICs) on a miscoscopic level

Cassing and Bratkovskaya, PRC 78 (2008) 034919; NPAS&31 (2009) 215
Cassing, EPJ ST 168 (2009) 3; NPA856 (2011) 162
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FORMATION OF QUARK-GLUON PLASMA
if the energy density is above the critical value ' B
pre-hadrons dissolve in massive quarks and gluons




PHSD: Parton-Hadron-String Dynamics
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heavy ion collisions (HICs) on a miscoscopic level
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PARTONIC STAGE
evolution based on off-shell transport equations
and the Dynamical Quasi-Particle Model (DQPM)
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massive off-shell quarks with broad spectral functions
hadronize to off-shell mesons and baryons
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evolution based on off-shell transport equations
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heavy ion collisions (HICs) on a miscoscopic level
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good description of bulk observables (rapidity and transverse momentum
distributions, flow coeficients, ...) for A+A collisions from SPS to LHC energies



PHSD + electromagnetic fields

PHSD has been extended including the dynamical formation
and evolution of the retarded electomagnetic field (EMF)
and its influence on the quasi-particle (QP) dynamics

Voronyuk et al., PRC 83 (2011) 054911
Toneev et al., PRC 85 (2012) 034910; PRC 86 (2012) 064907; PRC 95 (2017) 034911
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Retarded electromagnetic fields
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Retarded electromagnetic fields

Retarded electric and magnetic fields for a moving point-like charge

B(r,?) = [n x E(r.t)],,,

magnetic field created by a

Neglecting the acceleration
single freely moving charge
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EM fields in nuclear collisions

in a nuclear collision the magnetic field i1s a superposition
of solenoidal fields from different moving charges

Voronyuk et al. (PHSD team), PRC 83 (2011) 054911
Au+Au @RHIC 200 GeV — b =10fm
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EM fields in nuclear collisions

in a nuclear collision the magnetic field i1s a superposition
of solenoidal fields from different moving charges

Voronyuk et al. (PHSD team), PRC 83 (2011) 054911
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electric field strongly asymmetric
inside the overlap region




EM fields in proton-induced collisions
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EM fields 1in proton-induced collisions
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Centrality 1n heavy 1on collisions

Centrality characterizes the amount of overlap or size of the fireball in the collision region

e.g. (MC-)Glauber model

INITIAL STATE QUANTITIES <ssssssss) FINAL STATE OBSERVABLES
b’ Npart’ <{1\Ipa1rt’1\1coll}’ qu Nch7 ET’ Nneutron

initial state variables initial and final state variables final state variables

ATLAS Preliminary
\S=5.02 TeV

| Pb+Pb, 22-470 pb”’
1000 2000 3000 4000

N Ini<2.5

3<|n|<5 Fcal ik, [Tev]

from talk of Jiangyong Jia at MIAPP (2018)

CENTRALITY FLUCTUATION
“* main uncertainty for many measurements
¢ large in peripheral collisions or small collision systems



p+Au collisions (@ RHIC 200 GeV

average

10000

» correlation between
Nch(l n | <0. 5) and ]vpart

» large dispersion respect
to AA collisions



p+Au collisions (@ RHIC 200 GeV

p+Pb collisions @ LHC 5.02 TeV

dN_ /dn (n=0)

average

= PHSD
wmn PHSD GG Q=1.01

Konchakovski, Cassing and Toneev
JPG 41, 105004 (2014)




p+Au collisions (@ RHIC 200 GeV

CENTRALITY SELECTION

FROM MINIMUM BIAS EVENTS In|<2 <dN,,/dn>

0-5% 11.9
5-10% 3.9
10-20% 7.2

fraction of inelastic events with less than dN_,/dn

20-40% 5.1
40-60% 3.5
60-80% 2.2
80-100% 0.7

1.52 2.78 4.24 6.39 8.21 9.86
dN,/dn (Inl<2)

d]VCh/dI’) | cut



p+Au collisions (@ RHIC 200 GeV
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» enhanced particle
production in the
Au-going directions

» asymmetry increases
with centrality of
the collision

Adare et al. (PHENIX Collaboration), 1807.11928



p+Au collisions (@ RHIC 200 GeV
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p+Au collisions (@ RHIC 200 GeV
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Experimental data: Aidala et al. (PHENIX Collaboration), PRC 95 (2017) 034910



p+Au collisions (@ RHIC 200 GeV
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The Parton-Hadron-String-Dynamics (PHSD) describes the entire dynamical
evolution of heavy ion collisions within one single theoretical framework

PHSD has been extended to include in a consistent way the intense
electromagnetic fields produced in the very early stage of the collision

Preliminary study of p+Au collisions at top RHIC energy:
v’ the electric field is strongly asymmetric inside the overlap region

v' asymmetry of charged-particle rapidity distributions increasing with centrality

...LOOKING FORWARD

O Evolution dynamics and properties of the matter created in small and
asymmetric systems (e.g. p+Au, d+Au, 3He+Au @ RHIC, p+Pb @ LHC)

1 Influence of the intense electric field created in asymmetric collisions
on the formation of the quark-gluon plasma
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