Development of Plastic Anti-neutrino Detector Array (PANDA) for reactor monitoring

International School of Nuclear Physics 39th Course @Erice-Sicily, Sep. 16-24, 2017 Kitasato University **Shuichi Iwata**

Contents

- Introduction
 - Reactor monitor using a neutrino detector
- Reactor monitor: PANDA project
- Background measurement
 - Environmental γ, Cosmic-ray muon
 - Delayed coincidence rate
- Summary

Introduction

- The aim of reactor monitoring
 - Real-time monitoring of a reactor operation
 - By measuring **energy spectrum** and **rate** of reactor neutrinos, we can infer **the nuclide and abundance of reactor fuel**.
 - Nonproliferation of nuclear technology
 - It can be applied to **the non-intrusive inspection tool** proposed by IAEA.

An anti-neutrino is suitable tool for a reactor monitoring.

PANDA

Plastic Anti-Neutrino Detector Array

- Requirements for the aboveground reactor monitor
 - Portability
 - We want to monitor any reactor/place.
 - The total weight:
 - the enough fiducial volume to detect anti-neutrinos,
 - we can load with a van to transport.
 - Stability
 - Qualities of detection materials do not change while a detector was monitoring.

 \mathcal{V}_{e}

(Distance from core is several tens of meters.)

- Safety
 - The detector (materials) is required to be non-flammability.
- Cosmic-ray muon veto
 - Muon and γ /neutron produced by it cause major background sources.
- \Rightarrow We decided to use

Plastic scintillator wrapped in Gadolinium coated sheets.

PANDA **Plastic Anti-Neutrino Detector Array**

Advantages

- Solid state plastic scintillator \Rightarrow Non-flammability & Safety
- Segmented structure: 100 modules

 - \Rightarrow 1,000 kg target volume \Rightarrow Muon-veto can be given by itself without any counter.
- The detector can be loaded with a container (or a van) \Rightarrow Portability
- Gd is not dissolving, coated on sheets \Rightarrow Stability

ISNP2016 @Erice-Sicily

Reactor monitoring test with PANDA36

- Development had been started since 2006 at University of Tokyo.
 - 2008-2011: PANDA16: 4×4=16 modules
 - 2011-2013: PANDA36: 6×6=36 modules
 - 2013-2014: PANDA64: 8×8=64 modules
- 2012.Nov-2013.Jan, First measurement of ON/OFF operation of the Ohi reactor (Fukui, Japan).

Time line of PANDA project

Development had been started since 2006 at University of Tokyo, Since 2016, the PANDA project had been taken over to Kitasato Univ.

Kitasato U. U. Tokyo

PANDA100: 10×10=100 modules

- 2015 Construction had been started
- 2016.Mar: Project had been taken over to Kitasato Univ.
- 2016.Jul: Construction had been completed.
- 2016.Aug-Oct: γ-bursts observation at Mt. Norikura was carried out.

Detection efficiency prospect

(at the Ohi reactor: 3.4 GWth (PWR))

	PANDA36 (~2013)	PANDA100 (2016~)
Target mass [kg]	360	1000
Efficiency ⁺ [%]	3.15	9.24
Expected v rate [‡] [Events/day]	18.1	147
Expected BG rate [Events/day]	809	5061

⁺ Based on simulation

Distance of 36m from a core was assumed

Time line of PANDA project

Development had been started since 2006 at University of Tokyo, Since 2016, the PANDA project had been taken over to Kitasato Univ.

Kitasato U. _U. _{Tokyo}

PANDA100: **10**×**10**=**100** modules

- 2015 Construction had been started
- 2016.Mar: Project had been taken over to Kitasato Univ.
- 2016.Jul: Construction had been completed.
- 2016.Aug-Oct: γ-bursts observation at Mt. Norikura was carried out.

PANDA Collaborators

<u>S. Iwata^A</u>, Y. Inoue^B, C. Ito^C, Y. Kato^D, T. Kawasaki^A, Y. Kuroda^E, M. Minowa^E, R. Nakata^E, S. Oguri^F, A. Shibata^A, M. Takita^D, N. Tomita^E, T. Torizawa^A

^AKitasato University ^BICEPP, The University of Tokyo ^CJapan Atomic Energy Agency (JAEA) ^DICRR, The University of Tokyo ^ESchool of Science, The University of Tokyo ^FHigh Energy Accelerator Research Organization (KEK)

PANDA100 system

Background sources for PANDA

 Due to operate PANDA on the ground, a cosmic-ray muon causes major background sources.

Cosmic-ray muon

- Fast-neutron by spallation
- High energy γ-ray from radioactive isotopes produced by muon
- Environmental γ-ray up to 2.6 MeV
 - ²³⁸U and ²³²Th series
 - ⁴⁰K series
- Environmental (thermal) neutron

Building wall, floor, etc

11

Background classification

	Neutrino event	Accidental BG	Correlated BG
Prompt signal	Positron dE/dx + 2γ (1,022 keV)	Environmental γ	Recoil protons caused by fast-n
Delayed signal	Several γ's from thermal-n capture on Gd	Cosmic-ray muon, Environmental-n/γ	Several γ's from thermal-n capture on Gd
Ve Inverse Beta Decay	P P C G G G C C C C C C C C C C C C C	Spallation fast-n	Cosmic-ray muon Recoil p ⇒Fake Prom
	We estimate these E after requiring the D	BG rates Delayed-Coincidence	⇒Fake Delay
19, 2017			ISNP2016 @Erice

Background measurement

- In order to estimate the BG rate at the actual environment, we carried out the outside-measurement by PANDA100 into a 20-ft container.
 - Period: Aug.31 Sep.8, 2017 at Kitasato-Univ.
 - This experiment was as the practice for moving of PANDA100.
- We confirmed the shield effect of **water tanks** to buffer the neutron comes from outside of detector.
 - To shield from environmental-n and fast-n produced by a muon

Sep. 19, 2017

ISNP2016 @Erice-Sicily

Water tank

- We measured background rates with four configurations of the water tank setting.
- 1. No tank
- 2. Only tank put at the **Bottom**.
 - To protect n/γ coming from the ground.
- 3. Tank-B + 4-side tanks
 - To protect environmental n or γ coming from a building wall.
- 4. Tank-B + 4-side tanks + put on the **Top**

2 Bottom tanks

ISNP2016 @Erice-Sicily

Trigger and selection condition

Trigger condition

- Discriminator threshold level: -60 mV
- #Hit-modules: 2 or more
- Event selection
 - Prompt signal
 - $3 \text{ MeV} < E_{\text{tot}} < 8 \text{ MeV}$
 - Delayed signal
 - #Hit-modules ≥ 4
 - 4 MeV < E_{tot} < 8 MeV
 - $1.0 \text{ MeV} < \text{E}_{1st} < 8.0 \text{ MeV}$
 - 1.0 MeV < E_{2nd} < 8.0 MeV
 - Time window: 50 us $< dT \leq 100$ us

4

2

Low-energy BG $(=environmental \gamma)$ is more than a amount of expected vup to 3 MeV.

6

8 E [MeV]

Cut range

200

Result: Environmental γ

Selection: Total deposit energy < 3 MeV

	Total	<3MeV
Inside (Reference)	1.63kHz	1.46kHz
Outside,	1.29kHz	1.04kHz
w/o Water	(-20.8%)	(-28.7%)
Outside,	1.19kHz	0.94kHz
Tank-B	(-27.0%)	(-35.7%)
Outside,	0.92kHz	0.67kHz
Tank-B,4-sides	(-43.4%)	(-54.4%)
Outside,	0.94kHz	0.68kHz
Tank-Full	(-42.3%)	(-53.2%)

Water tank is powerful shield for low-energy environmental γ-ray.

Result: Cosmic-ray muon

Selection:

15 MeV < E < 25 MeV for each hit-module (Module size: 10 cm×10 cm×100cm)

	Muon
Inside (Reference)	133.76Hz
Outside,	176.63Hz
w/o Water	(+ <mark>32.0%</mark>)
Outside,	177.75Hz
Tank-B	(+32.9%)
Outside,	178.28Hz
Tank-B,4-sides	(+33.3%)
Outside,	179.52Hz
Tank-Full	(+ <mark>34.2%</mark>)

Water shield is not effective against cosmic-ray muon.

Sep. 19, 2017

Result: Delayed coincidence events

To evaluate BG events in delayed signal, we applied the delayed coincidence method into measured data.

Summary

- Anti-neutrino detector based on scintillator with Gd are suitable tools as a reactor monitor.
- We are developing the portable and non-flammable detector using a solid scintillator; **PANDA project**
- **Construction of the PANDA100** as the final version had completed in 2016.
- Accidental background estimation is in working.
 BG rates for various conditions were measured in our University.
 - In Laboratory: 0.022 Hz (~1,900 /day)
 - Outside w/o water shield: 0.097 Hz (~8,400 /day)
 - Bottom+4-sides covered: 0.095 Hz (~8,200 /day)
 - Full surface covered: 0.122 Hz (~10,500 /day)
 - Expected neutrino flux: 0.0017 Hz (147 v/day)
- The water shield seems to be effective against low-energy γ -ray.
- Further improvement of analysis is preparing for reducing accidental BG rate. (Ex. Event topological information)
- We are ready to measure at a Japanese reactor and are asking about the reactor status to an electric company.

Back Up

Sep. 19, 2017

ISNP2016 @Erice-Sicily

Jep. 19, 2017

ISNP2016 @Erice-Sicily

Gain adjustment

We adjusted each PMT gain (applied HV value) by energy spectrum ٠ of cosmic-ray

Sep. 19, 2017

Prospection of neutrino flux

【Ohi Power station case】 Thermal power: 3.4 GW Distance from core: 48 m

Neutrino detection rate (Ave.) 1.08×10⁻⁵ /sec/kg

Prospects for PANDA100

Efficiency and error estimation for PANDA36

Table 7.1: Summary of the detection efficiency and the systematic error: The detection efficiency of the delayed events is estimated for the simulated events which satisfied the prompt event selection, and the one of the time window is estimated for the simulated events which satisfied the prompt and delayed event selection. The relative error consists of the uncertainties in the simulation models "relative error(model)" and the PMT gain factors "relative error(gain)". The detection efficiency of 3.15 ± 0.93 % was estimated.

		efficiency	relative	relative
			error(model)	$\operatorname{error}(\operatorname{gain})$
prompt	trigger	28.6%	$12.1\%^{(1)}$	
	E_{total} cut	44.2%	10.5%	
	E_{2nd} cut	82.2%	$12.1\%^{(1)}$	
	fiducial cut	93.5%	5.0%	
	total	9.7%	16.8%	3.4%
delayed	trigger	48.8%	$19.4\%^{(2)}$	
	E_{total} cut	79.1%	$19.4\%^{(2)}$	
	E_{3rd} cut	91.9%	$19.4\%^{(2)}$	
	total	35.5%	19.4%	1.0%
time window		91.2%	14.3%	_
Total		3.15%		29.6%

(1) The uncertainties in the software trigger efficiency and the prompt E_{2nd} selection were estimated as a whole.

(2) The uncertainties in the three criteria for the delayed events were estimated as a whole.

Table 9.1: Anti-neutrino event selection criteria for PANDA100: It is similar to selection-1 for PANDA36 except for the software trigger.

software trigger:	Two or more modules in 100 modules deposite the energy of 150 keV or more.
prompt:	$\begin{array}{l} 3 \ \mathrm{MeV} \leq E_{\mathrm{total}} \leq 6 \ \mathrm{MeV} \\ E_{\mathrm{2nd}} \leq 520 \ \mathrm{keV} \end{array}$
delayed:	$\begin{array}{l} 3 \ \mathrm{MeV} \leq E_{\mathrm{total}} \leq 8 \ \mathrm{MeV} \\ \\ \frac{E_{\mathrm{3rd}}}{E_{\mathrm{total}}} \geq \frac{E_{\mathrm{1st}}/E_{\mathrm{total}} - 0.5}{5} \end{array}$
time window:	$8\mu\mathrm{s} \le t \le 150\mu\mathrm{s}$
fiducial cut:	The highest energy deposit places in inside $8 \times 8 = 64$ modules.
muon veto:	There is no event with $E_{\text{total}} > 8$ MeV for 250 μ s before the delayed event.

Table 9.2: Detection efficiency of PANDA100 by applying the selection of Tab.9.1: The detection efficiency of 9.24 % was estimated.

	efficiency
trigger	44.5%
E_{total} cut	58.0%
E_{2nd} cut	89.9%
fiducial cut	77.1%
total	17.9%
trigger	81.9%
E_{total} cut	76.6%
E_{3rd} cut	91.8%
total	57.6%
	89.8%
	9.24%
	$\begin{array}{c} {\rm trigger} \\ E_{\rm total} \ {\rm cut} \\ E_{\rm 2nd} \ {\rm cut} \\ {\rm fiducial} \ {\rm cut} \\ {\rm total} \\ {\rm trigger} \\ E_{\rm total} \ {\rm cut} \\ E_{\rm 3rd} \ {\rm cut} \\ {\rm total} \end{array}$

S. Oguri Ph.D thesis, University of Tokyo, 2012

Result: Single event

	Total	0-3MeV	3-6MeV	6-10MeV	10-50MeV	>50MeV
Inside (Reference)	1.63kHz	1.46kHz	13.62Hz	4.86Hz	18.90Hz	131.87Hz
Outside,	1.29kHz	1.04kHz	21.88Hz	13.84Hz	47.04Hz	167.80Hz
w/o Water	(-20.8%)	(-28.7%)	(+60.7%)	(+184.9%)	(+148.9%)	(+27.2%)
Outside,	1.19kHz	0.94kHz	20.49Hz	13.50Hz	47.26Hz	168.72Hz
Tank-B	(-27.0%)	(-35.7%)	(+50.5%)	(+178.0%)	(+150.1%)	(+27.9%)
Outside,	0.92kHz	0.67kHz	22.59Hz	15.22Hz	50.61Hz	168.29Hz
Tank-B,4-sides	(-43.4%)	(-54.4%)	(<mark>+65.9%</mark>)	(+213.2%)	(+167.8%)	(+27.6%)
Outside,	0.94kHz	0.68kHz	21.73Hz	15.23Hz	49.69Hz	170.94Hz
Tank-Full	(-42.3%)	(-53.2%)	(+59.6%)	(+213.5%)	(+162.9%)	(<mark>+29.6%</mark>)

Isin 2010 @ Lrice-Sicily

2017-09-01_c2_T60 (w/o tank) Live time ~ 1 hour #Events (/0.1MeV) #Events (/0.1MeV) Sinale Single Prompt Delayed Neutron Prompt Delayed Gamma 10⁵ Prompt-Delayed Neutron(fast1) Prompt-Delayed Neutron(fast1) 20 Prompt-Delayed Neutron(fast2) Prompt-Delayed Neutron(fast2) Prompt-Delayed Neutron(mid) Prompt-Delayed Neutron(slow) 10 Prompt-Delayed Gamma(fast) Prompt-Delayed Gamma(mid) 15 Prompt-Delaved Gamma(slow) 10³ 10 10² 10 0 10 12 14 E [MeV] 2 12 2 6 4 10 14 4 8 6 E [MeV]

(fast1)50us<dT<100us: 0.097 Hz (fast2)1050<dT<1100us : 0.018 Hz

 \rightarrow These events are not considered what were correlated with the prompt events in time.

Time line of PANDA project

Development had been started since 2006 at University of Tokyo

PANDA16 (Lesser PANDA): **4×4=16** modules

- 2008-2011
- Confirmation of the construction and operation
- 2011.Mar-May: First measurement at Hamaoka reactor

PANDA36: 6×6=36 modules

- 2011-2013
- DAQ system were updated S.Oguri et al. NIM A 757 (2014) 33-39 430 – 2012.Nov-2013.Jan: First measurement of ON/OFF operation 400 Reactor OFF _____44.2 of the Ohi reactor (Fukui, Japan). <u>82.2</u>%2 **Ohi reactor Unit 2**: 3.4 GWth (PWR) 93.5 0 **370**-9.7 2 9 cut **Distance form the core**: 35.9 m Prompt Total Duration: 30 days (ON), 34 days (OPF) 48.8% **340 Reactor ON** Observed neutrino event: $21.8 \pm 11.4 / day_{1}$ 11/19 11/26 12/03 12/10 12/17 12/24 12/31 Date 01/07 01/1 PANDA64: 8×8=64 modules ved Total 35.5% Time window 91.2% 2013-2014 Water tanks for fast-n shield were introduced and tested – 2014.Jul-Sep: γ-bursts from thundercloud had been observed at Mt. Norikura

16

ISNP2016 @Erice-Sicily

Sep. 19, 2017

Tokyo

Background measurement

In order to estimate accidental background near the reactor, we performed the background measurement of the PANDA100 at Kitasato Lab (Ground floor of 3F Bldg). Energy spectrum of single event

Trigger condition

- Threshold of discriminator: -20 mV
- Module hit coincidence: 2 or more

Live time: 32,501 sec (~0.38 days)

Averaged DAQ rate: 5.45 kHz

Japanese reactor status

After the Great East Japan Earthquake, regulations of reactors in Japan were renewed. Almost all reactors in Japan are shut down for inspection or decommissioning. Restart of them is difficult so far.

Research reactors (Monju, Joyo, etc) are also shut down by operational troubles.

A using of them soon as a neutrino facility is not clear.

Japan Nuclear Technology Institute (http://www.gengikyo.jp)

Power Station	Thermal power [GW]	Status
Tomari	1.6(#1), 2.6(#2)	Shutdown
Higashidori	3.3	Shutdown
Onagawa	1.6(#1), 2.4(#2,3)	Shutdown
Fukushima II	3.3(#1-4)	Shutdown
Kashiwazaki- Kariwa	3.3(#1-5), 4.0(#6,7)	Shutdown
Shika	1.6(#1), 4.0(#2)	Shutdown
Tokai	3.3	Shutdown
Tsuruga	3.4	Shutdown
Hamaoka	3.3(#1,2), 4.0(#3)	Shutdown
Mihama	2.4	Shutdown
Ohi	3.4	Shutdown
Takahama	2.7(#1-4)	Shutdown
Shimane	1.4(#1), 2.4(#2)	Shutdown
Ikata	1.7 (#2) 2.7 (#3)	Shutdown Operating
Genkai	1.7(#1), 3.4(#2,3)	Shutdown
Sendai	2.7 (#1) 2.7 (#2)	Shutdown Operating

Sep. 19, 2017

ISNP2016 @Erice-Sicily

γ-ray bursts under Thundercloud

PANDA detector is also working as the large volume γ -ray detector. We try to observe γ bursts from the thundercloud. In the thundercloud, the natural electron acceleration is expected.

For accumulating of γ -ray burst events and the total system test of the PANDA100, we carried out the observation test using the PANDA100 at mountaintop.

Burst event candidate

A burst event is indentified using the **single event analysis**. We found the burst event candidate on 8 Sep. 2016.

