

Silicon drift detector prototypes for the keV-scale sterile neutrino search with TRISTAN

Konrad Altenmüller – Technische Universität München and CEA Saclay and the TRISTAN group

1 Max-Planck-Institut für Physik — 2 CEA Saclay / IRFU — 3 Karlsruher Institut für Technologie — 4 IAS, Technische Universität München

keV-scale sterile neutrinos

- Sterile neutrinos with keV-scale masses are dark matter candidates
- Sterile neutrinos could mitigate small scale problems
- X-ray telescopes put strong bounds on keV-scale sterile neutrinos (3.5 keV line?)
- Sterile neutrinos can be added as right-handed leptons to the standard model in a minimal extension

Cold Dark

21.09.2017 Konrad Altenmüller - Silicon drift detector prototypes for the keV-scale sterile neutrino search with TRISTAN

The KATRIN Experiment

KATRIN measures the effective neutrino mass by its imprint on the tritium spectral shape at the endpoint:

$$N(E) = C(E) \cdot F(Z, E) \cdot p \cdot (E + m_e) \cdot (E - E_0) \cdot \sqrt{(E - E_0)^2 - m_v^2}$$

Also sterile neutrinos distort the spectrum by their admixture to active neutrinos:

keV-scale sterile neutrinos in KATRIN

The TRISTAN project

With a modified KATRIN setup, TRISTAN aims to scan the entire tritium spectrum – integral an differential – with unprecedented accuracy.

Following changes are necessary:

Detector requirement: handle high rates, good energy resolution \rightarrow multi-pixel array of SDDs

Silicon Drift Detectors

Principle: signal charge collection on small readout node by internal static electric field.

Drift rings shape the electrical field for the charge collection.

Some advantages of SDDs:

- Small capacitance due to point-like anode:
 ➤Low noise → high energy resolution
 ➤ High count rates
- Flexible size, flexible geometry
- Proven design, deep space experience, e.g. on board of 'Opportunity'

Silicon Drift Detectors

Principle: signal charge collection on small readout node by internal static electric field.

Drift rings shape the electrical field for the charge collection.

Some advantages of SDDs:

- Small capacitance due to point-like anode:
 ➤Low noise → high energy resolution
 ➤ High count rates
- Flexible size, flexible geometry
- Proven design, deep space experience, e.g. on board of 'Opportunity'

SDD prototypes

"Prototype-0"

Several SDD prototypes with 7 hexagonal pixels each have been produced by MPG HLL.

- pixel diameter 0.5, 1 and 2 mm
- 2-12 drift rings
- thickness 450 μm

Features:

- No dead area due to monolithic design
- Low capacitance ~fF
- ultra-thin (~30 nm) dead layer (measurement in progress)

SDD prototypes

Idef-X BD ASIC by CEA Saclay

- 32 channel, proven system
- Originally developed for x-ray space telescopes
- Equilvalent noise charge: 44 e⁻

CUBE ASIC by XGLab

- Single channel
- Enc: 7 e⁻
- pulsed reset

Another ASIC by KIT

Characterization of CEA System

70

65

- 60

- Measuring the fwhm as a function of the peaking time allows to determine detector / read-out characteristics like capacity and leakage current
- The noise floor was reached with all "prototype-0" detectors → the energy resolution is limited by the electronics, not the detector

2mm detector warn 2mm detector cold

1mm detector cold

Characterization of XGLab system

21.09.2017 Konrad Altenmüller - Silicon drift detector prototypes for the keV-scale sterile neutrino search with TRISTAN

Charge sharing (CEA system)

Advantage of the CEA prototype system: <u>Multi-channel ASIC</u>, all 7 pixels can be read-out simultaneously and are synchronized

Charge sharing can be studied by looking at coincident events in neighbouring pixels

The charge of 3 % (10 %) of all events is shared between two or more pixels for 2 mm (1 mm) detector diameter

Dead layer (MPP system)

The excellent energy resolution allows to measure the dead layer thickness, which is depending on the production process and is not known with an acceptable accuracy

- The dead layer should be as thin as possible to achieve a low energy threshold
- The thickness is obtained by comparing measurements at different energies and incident angles with simulations

Other applications for TRISTAN SDDs

SDD detectors have many other applications:

- X-ray detectors in Axion search
- Compton telescope COCOTE: TRISTAN prototype-0 first science assignment as first detector layer in a compton telescope aboard a stratosphere balloon

incoming

gamma-ra

scattered gamma-ray

is absorbed in second layer gamma-ray

scatters in first layer

scattered

gamma-rav

first detector layer

second detector layer

TRISTAN at Troitsk v-mass

The Troitsk V-mass experiment is a technological predecessor of KATRIN

- Gaseous tritium source
- lowest laboratory limit on effective neutrino mass (2 eV) together with Mainz
- Installation of 7-pixel TRISTAN detector with CEA ASIC in May/June 2017

Goals:

- Detector characterization
- first tritium data, develop analysis tools

Electron sources at Troitsk

21.09.2017 Konrad Altenmüller - Silicon drift detector prototypes for the keV-scale sterile neutrino search with TRISTAN

Calibration with E-Gun

Monoenergetic electrons from e-gun in source section

- Calibrate the detector
- Study energy response to determine backscattering, backreflection etc
- beam-spot is smaller then the pixel-diameter
 → number of event in peak / tail depends on position of beam.

Calibration with wall electrons

Monoenergetic electrons from spectrometer walls (retarding potential of MAC-E filter):

- Focus detector with the Bfield onto the walls →
- Isotropic flux over detector radius, similar incident angles (constant backscattering probability)

18

Calibration by subtracting tritium spectra

Tritium energy response

- A quasi-monoenergetic response can be obtained by subtracting tritium spectra with different retarding potentials
- Only a few spectra with high statistics so far

19

Measurements at Troitsk

20

Next steps

- Improve transfer matrix: use parametrized transfer function (Gaussian plus tail) or interpolated data to fit the spectrum above 13 keV
- Understand the response with the help of Monte Carlo simulations

Next measurement campaign in November

The next prototypes

"Prototype-1"

Monolithic SDD array with \sim 100 3-mm-SDDs.

Characteristics:

- JFET (first amplification stage) integrated on detector surface
- Pulsed reset
- Common clock between pixels (identify multiplicity, pile-up tagging)
- Chip is glued on support-structure with integrated cooling

The final detector

- 19 25 prototype-1 modules
- 3000 4000 pixels
 - \rightarrow 70 kcps /pixel
- maximize number of "golden" pixels, which are completely surrounded by other pixels without a gap
- Minimize dead areas
- Minimize length of traces (wires) to reduce capacitance
- \rightarrow Larger modules, approx. quadratic
- Efficient covering of fluxtube
- Yield in sensor chip production
- \rightarrow Smaller modules

Conclusions

- Goal: measure the entire tritium spectrum at KATRIN to search for new physics, e.g. keV-scale sterile neutrinos
- \rightarrow New detector system is needed = TRISTAN
- 7-pixel prototypes "prototype-0" with different ASICS were characterized and showed promising results
- First tritum data was taken with a prototype detector at the Troitsk v-mass spectrometer.
- Design and planning of final system is ongoing

- TRISTAN phase-0: feasibility run with KATRIN next year
- TRISTAN phase-1: installation of SDD array after data taking of KATRIN is finished in ~ 5 years