
Silicon drift detector prototypes 
for the keV-scale sterile neutrino 
search with TRISTAN

Konrad Altenmüller – Technische Universität München and CEA Saclay

and the TRISTAN group

1 Max-Planck-Institut für Physik — 2 CEA Saclay / IRFU — 3 Karlsruher Institut für Technologie — 4 IAS, Technische Universität München



keV-scale sterile neutrinos

• Sterile neutrinos with keV-scale masses are dark matter 
candidates

• Sterile neutrinos could mitigate small scale problems

• X-ray telescopes put strong bounds on keV-scale sterile 
neutrinos (3.5 keV line?)

• Sterile neutrinos can be added as right-handed leptons
to the standard model in a minimal extension
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The KATRIN Experiment
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𝑁 𝐸 = 𝐶 𝐸 ⋅ 𝐹 𝑍, 𝐸 ⋅ 𝑝 ⋅ 𝐸 + 𝑚𝑒 ⋅ 𝐸 − 𝐸0 ⋅ 𝐸 − 𝐸0
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KATRIN measures the effective neutrino mass by its imprint on the tritium spectral
shape at the endpoint: 

cos2 𝜃 ⋅ 𝑁(𝐸,𝑚𝑙𝑖𝑔ℎ𝑡 𝜈)

sin2 𝜃 ⋅ 𝑁(𝐸,𝑚𝑠𝑡𝑒𝑟𝑖𝑙𝑒 𝜈)

Also sterile neutrinos distort the spectrum by their admixture to active neutrinos:



keV-scale sterile neutrinos in KATRIN
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Feasibility run “TRISTAN phase 0” 

with existing Katrin setup with 

reduced source-strength

7-day feasibility

run next year!

Reduce count rate 
 less tritium in the
source

Adiabatic transport:
 Increase magnetic field in spectrometer

Backscattering:
 Low magnetic field at 
detector



The TRISTAN project

With a modified KATRIN setup, TRISTAN aims to scan the entire tritium spectrum –
integral an differential – with unprecedented accuracy. 

Following changes are necessary:

21.09.2017 Konrad Altenmüller - Silicon drift detector prototypes for the keV-scale sterile neutrino search with TRISTAN 5

Reduce down to
low retarding
potential
 Electrons with
all energies shall
reach the
detector

New detector

additionally to

counting electrons

their enegry has to

be determined

THIS TALK

Slightly less
tritium lower
rate, but new
systematics like 
scattering, 
trapped electrons

New rear wall, 

changed B-field

parameters

mitigate back 

scattering of

electrons and

emission of auger

electrons

Detector requirement: handle high rates, good energy resolutionmulti-pixel array of SDDs



Silicon Drift Detectors
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Principle: signal charge collection on small 
readout node by internal static electric field.

Drift rings shape the electrical field for the 
charge collection.

Some advantages of SDDs:
• Small capacitance due to point-like anode:

➢Low noise  high energy resolution
➢High count rates

• Flexible size, flexible geometry
• Proven design, deep space

experience, e.g. on board of
‘Opportunity‘



Silicon Drift Detectors
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Principle: signal charge collection on small 
readout node by internal static electric field.

Drift rings shape the electrical field for the 
charge collection.

Some advantages of SDDs:
• Small capacitance due to point-like anode:

➢Low noise  high energy resolution
➢High count rates

• Flexible size, flexible geometry
• Proven design, deep space

experience, e.g. on board of
‘Opportunity‘

anode of
pixel 1 drift ring

anode of
pixel 2

path of charge carrier



SDD prototypes
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“Prototype-0”
Several SDD prototypes with 7 hexagonal pixels 
each have been produced by MPG HLL.
• pixel diameter 0.5, 1 and 2 mm
• 2-12 drift rings
• thickness 450 µm

Features:
• No dead area due to monolithic design
• Low capacitance ∼fF
• ultra-thin (∼30 nm) dead layer (measurement 

in progress)

1 cm



SDD prototypes
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Idef-X BD ASIC by CEA Saclay
• 32 channel, proven system
• Originally developed for x-ray

space telescopes
• Equilvalent noise charge:  44 e-

CUBE ASIC by XGLab
• Single channel
• Enc: 7 e-

• pulsed reset

Another ASIC by KIT



Characterization of CEA System
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Cooling the detector to
- 30 °C reduces thermal 
leakage current and the
noise floor is reached

• Measuring the fwhm as a function of the peaking
time allows to determine detector / read-out 
characteristics like capacity and leakage current

• The noise floor was reached with all “prototype-
0” detectors  the energy resolution is limited 
by the electronics, not the detector

400 eV fwhm with
CEA ASIC

Symmetric peaks
 efficient charge
collection



Characterization of XGLab system

fwhm < 150 eV at 5.9 keV  enc < 9
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Excellent energy resolution!

Fe
55



Charge sharing (CEA system)
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Advantage of the CEA prototype system:
Multi-channel ASIC, all 7 pixels can be read-out 
simultaneously and are synchronized

Charge sharing can be studied by looking at 
coincident events in neighbouring pixels
➢ The charge of 3 % (10 %) of all events is

shared between two or more pixels for 2 mm 
(1 mm) detector diameter

Coincident events in 
neighbouring pixels



Particle sources and simulation software:

Dead layer (MPP system)
The excellent energy resolution allows to measure the dead layer thickness, which 
is depending on the production process and is not known with an acceptable 
accuracy
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Preliminary, WIP

• The dead layer should be as 

thin as possible to achieve a 

low energy threshold

• The thickness is obtained by  

comparing measurements at 

different energies and incident 

angles with simulations



Other applications for TRISTAN SDDs
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SDD detectors have many other applications:
• X-ray detectors in Axion search
• Compton telescope COCOTE: TRISTAN 

prototype-0 first science assignment as 
first detector layer in a compton telescope 
aboard a stratosphere balloon



TRISTAN at Troitsk ν-mass
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The Troitsk ν-mass experiment is a 
technological predecessor of KATRIN
• Gaseous tritium source
• lowest laboratory limit on effective 

neutrino mass (2 eV) together with 
Mainz

• Installation of 7-pixel TRISTAN detector 
with CEA ASIC in May/June 2017

Goals: 
• Detector

characterization
• first tritium data,  

develop analysis tools



Electron sources at Troitsk
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E-gun: narrow (Ø < 1 mm) 

monoenergetic electron

beam. The position of the

beam can be controlled.

Electrons from gaseous

tritium source

Spectrometer walls: monoenergetic

electrons emitted from the electrodes. With

a proper B-field configuration the electrons

can be focused on the detector.

Determination of detector response with
monoenergetic electrons



Calibration with E-Gun
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Monoenergetic electrons

from e-gun in source

section

• Calibrate the detector

• Study energy response

to determine

backscattering, 

backreflection etc

• beam-spot is smaller

then the pixel-diameter 

 number of event in 

peak / tail depends on 

position of beam.

Backscattered and backreflected
electrons

Full-E peakFull-E peak



Calibration with wall electrons

Monoenergetic electrons
from spectrometer walls
(retarding potential of MAC-
E filter):

• Focus detector with the B-
field onto the walls 

• Isotropic flux over detector
radius, similar incident
angles (constant
backscattering probability) 
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Ionization peakBackscattered and backreflected
electrons



Calibration by subtracting tritium spectra

• Frage danach: how representative, how can we use them
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Tritium energy response

• A quasi-monoenergetic
response can be
obtained by subtracting
tritium spectra with
different retarding
potentials

• Only a few spectra with
high statistics so far

Backscattered and backreflected
electrons

Ionization peak



Measurements at Troitsk
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Out of the box result: observed
spectrum has ~ 30 % less
electrons that lost energy

Transfer matrix from
wall electrons

Model of tritium
spectrum

Response of wall electrons NOT equal to
tritium electrons due to different magnetic
field configurations: wall electrons that
backscattered on the detector are always
reflected back to the detector. This is not 
true for tritium electrons



Next steps

• Improve transfer matrix: use
parametrized transfer function
(Gaussian plus tail) or interpolated data
to fit the spectrum above 13 keV

• Understand the response with the help
of Monte Carlo simulations

21.09.2017 21

χ2/dof(143) = 1.016

Next measurement campaign in November
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The next prototypes
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“Prototype-1”
Monolithic SDD array with
∼100 3-mm-SDDs. 

Characteristics:
• JFET (first amplification stage) integrated

on detector surface
• Pulsed reset
• Common clock between pixels (identify

multiplicity, pile-up tagging)
• Chip is glued on support-structure with

integrated cooling



The final detector
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• 19 - 25 prototype-1 modules

• 3000 - 4000 pixels 

 70 kcps /pixel

• maximize number of „golden“ pixels, 
which are completely surrounded by 
other pixels without a gap

• Minimize dead areas

• Minimize length of traces (wires) to 
reduce capacitance

 Larger modules, approx. quadratic

• Efficient covering of fluxtube

• Yield in sensor chip production

 Smaller modules



Conclusions

• Goal: measure the entire tritium spectrum at KATRIN to search for new physics, 
e.g. keV-scale sterile neutrinos

 New detector system is needed = TRISTAN

• 7-pixel prototypes “prototype-0“ with different ASICS were characterized and
showed promising results

• First tritum data was taken with a prototype detector at the Troitsk ν-mass
spectrometer.

• Design and planning of final system is ongoing
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• Next measurement campaign in Troitsk with improved detector and more
statistics in November

• TRISTAN phase-0: feasibility run with KATRIN next year
• TRISTAN phase-1: installation of SDD array after data taking of KATRIN is

finished in ~ 5 years


