elusives invisiblesPlus neutrinos, dark matter & dark energy physics

School of Physics and Astronomy

Southar

Neutrino Theory

From the review: S.F.King 1701.04413 Prog.Part.Nucl.Phys. 94 (2017) 217

At the end of Inflation the Universe was empty, cold and bare...

After reheating a very slight excess of matter was somehow generated

0,000,000

+ few

Current universe

M. Witek - Antymateria

Giving the observed baryon asymmetry of the Universe

 $\eta_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = \frac{n_B}{n_{\gamma}} \approx 6 \times 10^{-10}$

heic1506 — Science Release

Dark Matter?

Dark Energy?

The Standard Model

leaves many questions unanswered...

Unification?

Origin of quark and lepton masses?

Simple Lepton Mixing Ansatze $\theta_{13} = 0^{\circ} \quad \theta_{23} = 45^{\circ}$ **Bimaximal** $U_{BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} P \quad \theta_{12} = 45^{\circ}$

D Tri-bimaximal U_{TB}

$$= \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} P \\ \theta_{12} = 35.26^{o}$$

C Golden ratio
$$U_{GR} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} P$$

 $\phi = \frac{1+\sqrt{5}}{2}$ $\tan \theta_{12} = \frac{1}{\phi}$ $\theta_{12} = 31.7^{\circ}$

Tri-maximal Mixing

$$U_{\rm TM1} \approx$$

$$\begin{pmatrix} \sqrt{\frac{2}{3}} & - & - \\ -\frac{1}{\sqrt{6}} & - & - \\ \frac{1}{\sqrt{6}} & - & - \end{pmatrix}$$

Allows for non-zero reactor angle

Implies sum rule relations between PMNS parameters

$$U_{\rm TM2} \approx \begin{pmatrix} - & \frac{1}{\sqrt{3}} & - \\ - & \frac{1}{\sqrt{3}} & - \\ - & -\frac{1}{\sqrt{3}} & - \end{pmatrix}$$

The Lepton Mixing Angles

The oscillation observable CPViolating Phase

Quark vs Lepton mixings

	$ heta_{12}$	θ_{23}	$ heta_{13}$	δ
Quarks	$\underset{\pm 0.1^{\circ}}{13^{\circ}}$	$2.4^{\circ}_{\scriptscriptstyle{\pm 0.1^{\circ}}}$	$\underset{\pm 0.05^\circ}{0.2^\circ}$	$70^\circ_{\pm5^\circ}$
Leptons	$\underset{\pm1^{\circ}}{34^{\circ}}$	$\underset{\substack{41^\circ\pm1^\circ\\50^\circ\pm1^\circ}}{45^\circ}$	$8.5^{\circ}_{\scriptscriptstyle \pm 0.15^{\circ}}$	$-90^{\circ}_{\pm50^{\circ}}$

Global fits Concha talk

Open Questions

Is CP violated in the leptonic sector? (Probably) Is the atmospheric angle in first or second octant? Neutrino mass: NO or IO ?

Lightest neutrino mass?

Roadmap of neutrino mass

Loop Models of Neutrino Mass

Minimal Type | seesaw

Simple way to deal with 3 RHN

SFK'98

Littlest Seesaw

- Two right-handed neutrinos (RHN) ν_{R}^{atm} ν_{R}^{sol}
- Diagonal $M_R = \begin{pmatrix} M_{atm} & 0 \\ 0 & M_{sol} \end{pmatrix}$ completely decoupled ν_R^{dec}
- Diagonal (m_e, m_μ, m_τ)
- Constrained Sequential Dominance (CSD3): $m_D = \begin{pmatrix} 0 & b \\ a & 3b \\ a & b \end{pmatrix}$ or $m_D = \begin{pmatrix} 0 & b \\ a & b \\ a & b \end{pmatrix}$ Type B $\begin{pmatrix} 0 & b \\ a & b \\ a & 3b \end{pmatrix}$

Enforced by symmetry (see later)

SFK**,**Luhn 1607.05276

The Littlest Seesaw

Low energy neutrino mass matrices after seesaw:

$$m_{\text{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$$
$$m_{\text{LSB}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix}$$

SD m_a>>m_b predicts NO with m₁=0 Depends on 3 parameters: ma, mb, eta

Best Fit LS Predictions NO with m1=0

	LSA		LSB		NuFIT 3.0
	η free	η fixed	η free	η fixed	global fit
$m_a \; [\mathrm{meV}]$	27.19	26.74	26.95	26.75	
$m_b \; [{ m meV}]$	2.654	2.682	2.668	2.684	
$\eta \;[\mathrm{rad}]$	0.680π	$2\pi/3$	-0.673π	$-2\pi/3$	
θ_{12} [°]	34.36	34.33	34.35	34.33	$33.72\substack{+0.79 \\ -0.76}$
θ_{13} [°]	8.46	8.60	8.54	8.60	$8.46\substack{+0.14 \\ -0.15}$
$\theta_{23} [\circ] \stackrel{\text{Near maxima}}{\text{mixing}}$	45.03	45.71	44.64	44.28	$41.5^{+1.3}_{-1.1}$
δ [°]	-89.9	-86.9	-91.6	-93.1	-71^{+38}_{-51}
$\Delta m_{21}^2 \ [10^{-5} {\rm eV}^2]$	7.499	7.379	7.447	7.390	$7.49\substack{+0.19 \\ -0.17}$
$\Delta m_{31}^2 \ [10^{-3} \mathrm{eV}^2]$	2.500	2.510	2.500	2.512	$2.526_{-0.037}^{+0.039}$
$\Delta \chi^2$ / d.o.f	4.1/3	5.6/4	3.9/3	4.5/4	

RG Corrections in SM (are large)

SM with $M_{atm} = 10^{15} \text{ GeV}$ and $M_{sol} = 10^{12} \text{ Ge}$					
	Λ_{GUT}	M _{atm}	M _{sol}	$\Lambda_{\sf EW}$	
$\theta_{13}(\text{deg})$	7.62574	7.81215	8.47979	8.4798	
$\theta_{12}(\text{deg})$	34.5348	34.4977	34.3575	34.3572	
$\theta_{23}(\text{deg})$	45.1425	42.9816	42.3751	42.3744	
m_2 (meV)	13.537	12.2035	12.1317	8.73113	
m_3 (meV)	87.6802	75.4657	69.8112	50.2431	
$\delta_{CP}(deg)$	-89.2885	-88.0086	-90.3508	-90.3507	
$\sigma_{\rm CP}({\rm deg})$	-38.9558	-40.649	-38.9917	-38.9917	

RG Corrections in SUSY (are small)

 $M_{atm} = 10^{12} \text{ GeV and } M_{sol} = 10^{15} \text{ GeV}$ Case A, M_{SUSY} = 1 TeV, tan β =5, $\bar{\eta}_b$ =0.6

	Λ_{GUT}	M _{sol}	<i>M</i> atm	$\Lambda_{\sf EW}$
$\theta_{13}(\text{deg})$	8.41036	8.41346	8.41449	8.41694
$\theta_{12}(\text{deg})$	34.3737	34.4593	34.4613	34.4648
$\theta_{23}(\text{deg})$	45.5262	45.4286	45.4309	45.4401
m_2 (meV)	5.06633	5.24637	6.02352	8.53262
m_3 (meV)	30.1179	30.9015	35.4702	50.2415
$\delta_{\rm CP}({\rm deg})$	-87.6504	-87.8008	-87.8032	-87.8023
$\sigma_{\rm CP}(\rm deg)$	-143.312	-143.071	-143.067	-143.067

Family Symmetry

Direct Models

TBM from S₄ But TBM is excluded so: $\Delta(6n^2)$

But many people don't like such large groups

Semi-Direct Models (with small groups)

maxima $\theta_{12} = 36.0 \\ 35.0$ 0.8 TBM 34.0 $\delta^{\scriptscriptstyle 0.6}$ 33.0 0.4 31.0 0.2 cosô 0 -0.2 -0.4 -0.6 -0.8

8.4

 θ_{13}

8.6

8.8

8.2

-1

8

Solar Sum Rules (from charged lepton corrections)

 $^{\circ} heta_{13}$

Ballett, SK, Luhn, Pascoli, Schmidt 1410.7573

Atmospheric Sum Rules

Grand Unified Theories

Georgi, Glashow

Right-handed neutrino is singlet

 $\overline{\mathbf{5}} = d^{c}(\overline{\mathbf{3}}, \mathbf{1}, 1/3) \oplus L(\mathbf{1}, \overline{\mathbf{2}}, -1/2),$ $\mathbf{0} = u^{c}(\overline{\mathbf{3}}, \mathbf{1}, -2/3) \oplus Q(\mathbf{3}, \mathbf{2}, 1/6) \oplus e^{c}(\mathbf{1}, \mathbf{1}, 1),$

Up-type quarks

 $\overline{T_1}$

Froggatt-Nielsen

Summary of A₄ x SU(5)

- Explains quark mass hierarchies, mixing angles and the CP phase.
- Reproduces Littlest Seesaw predictions (SUSY)
- $\,\circ\,$ Near maximal atmospheric mixing, normal hierarchy, m1=0
- $\circ~Z_9$ flavour symmetry fixes the phase η to be 2pi/3
- Leptogenesis fixes $M_{atm} \sim 10^{10} \text{ GeV}$
- Renormalisable at GUT scale, SU(5) breaking potential, spontaneously broken CP.
- $\,\circ\,$ The MSSM is reproduced with R-parity from discrete $Z_4{}^R$.
- Doublet-triplet splitting via the Missing Partner mechanism.
- mu term is generated at the correct scale.
- Proton decay is sufficiently suppressed.
- Solves strong CP problem through the Nelson-Barr mechanism .

Many other possibilities Mu-Chun

	$G_{\rm GUT}$	$SU(2)_L \times U(1)_Y$	SU(5)	PS	SO(10)
G_{FAM}					
S_3		[29]			[150]
A_4		[36, 49, 51, 62, 151 - 154]	[155-15]	[66, 159, 160]	
T'			[161]		
S_4		[31, 49, 51, 154, 163]	[164, 165]	[162]	[166]
A_5		[51, 169]	[170]		
T_7		[171, 172]			
$\Delta(27)$		[173]			[174]
$\Delta(96)$		[175, 176]	[177]		[178]
D_N		[179]			
Q_N		[180]			
other		[181]	[182]	[183]	

Conclusions

- Origin of neutrino mass is unknown (... BSM)
- Roadmap of possibilities
- Attractive possibility is Type I seesaw
- Littlest seesaw predicts PMNS with RG corrections in SM large (SUSY small RG corrections, maximal θ_{23})
- Discrete Family Symmetry NOT EXCLUDED by $heta_{13}$
- Discrete Family Symmetry PREDICTS Sum Rules
- GUTs treats quarks and leptons on same footing
- Family symmetry x GUTs unified theory of forces and flavour in progress...