
Neutrino Theory
From the review: S.F.King 1701.04413  

Prog.Part.Nucl.Phys. 94 (2017) 217

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS
39th Course: NEUTRINOS IN COSMOLOGY,

IN ASTRO-, PARTICLE- AND NUCLEAR PHYSICS
ERICE–SICILY: 16 – 24 SEPTEMBER 2017

Sponsored by the:  • European Physical Society • Extreme Matter Institute EMMI
• GSI Helmholtzzentrum für Schwerionenforschung  • KCETA Karlsruhe Institute of Technology

    • Italian Ministry of University and Research • Sicilian Regional Government

PURPOSE OF THE COURSE

The program concentrates on the following topics: Search for the neutrino cosmic
background; Neutrinos and the structure formation of the Universe; Neutrinos and dark
matter; Sterile neutrinos; Neutrinos in supernovae and merger events; Neutrinos in stellar
burning and the formation of the elements; Determination of the electron-neutrino mass
by electron capture (ECHo, NuMECS and HOLMES); Measurement of the electron-
antineutrino mass in tritium decay (KA TRIN); Is the neutrino a Majorana- or Dirac
particle? Determination by the neutrinoless Double Beta Decay. The Majorana-neutrino
mass; The neutrino hierarchy problem and short base-line neutrino oscillations; Neutrinos
and the search for fundamental symmetry violations such as CP-violation.              

APPLICATIONS
Persons wishing to attend the Course should register online at:

http://theorie.ikp.physik.tu-darmstadt.de/erice/  or  http://www.uni-tuebingen.de/erice/
or apply in writing to:

• Professor Dr Amand FAESSLER
Universität Tuebingen
Auf der Morgenstelle 14  –  D-72076 Tuebingen, Germany
Tel +49.7071.2976370  –  Fax +49.7071.295388
e-mail: erice@physik.tu-darmstadt.de

• Professor Jochen WAMBACH
Institut Kernphysik 
Technische Universitaet Darmstadt
Schlossgartenstrasse 2 – D-64289 Darmstadt, Germany
e-mail: erice@physik.tu-darmstadt.de

• Professor Michael BUBALLA
Institut Kernphysik 
Technische Universitaet Darmstadt
Schlossgartenstrasse 2 – D-64289 Darmstadt, Germany
e-mail: erice@physik.tu-darmstadt.de

They should specify:
i) date and place of birth together with present nationality;
ii) degree and other academic qualifications;
iii) present position and place of work;
iv) postal and e-mail address.
Further information on the school and application forms for fellowships can be

found at the same web address.

POETIC TOUCH

According to legend, Erice, son of Venus and Neptune, founded a small
town on top of a mountain (750 metres above sea level) more than three thousand
years ago.  The founder of modern history — i.e. the recording of events in a
methodic and chronological sequence as they really happened without reference
to mythical causes — the great Thucydides (~500 B.C.), writing about events
connected with the conquest of Troy (1183 B.C.) said:  «After the fall of Troy
some Trojans on their escape from the Achaei arrived in Sicily by boat and as they
settled near the border with the Sicanians all together they were named Elymi:
their towns were Segesta and Erice.»  This inspired Virgil to describe the arrival
of the Trojan royal family in Erice and the burial of Anchises, by his son Aeneas,
on the coast below Erice.  Homer (~1000 B.C.), Theocritus (~300 B.C.), Polybius
(~200 B.C.), Virgil (~50 B.C.), Horace (~20 B.C.), and others have celebrated this
magnificent spot in Sicily in their poems.  During seven centuries (XIII-XIX) the
town of Erice was under the leadership of a local oligarchy, whose wisdom assured
a long period of cultural development and economic prosperity which in turn gave
rise to the many churches, monasteries and private palaces which you see today.          

In Erice you can admire the Castle of Venus, the Cyclopean Walls (~800
B.C.) and the Gothic Cathedral (~1300 A.D.).  Erice is at present a mixture of
ancient and medieval architecture.  Other masterpieces of ancient civilization are
to be found in the neighbourhood:  at Motya (Phoenician), Segesta (Elymian), and
Selinunte (Greek). On the Aegadian Islands — theatre of the decisive naval battle
of the first Punic War (264-241 B.C.) — suggestive neolithic and paleolithic
vestiges are still visible:  the grottoes of Favignana, the carvings and murals of
Levanzo.

Splendid beaches are to be found at San Vito Lo Capo, Scopello, and
Cornino, and a wild and rocky coast around Monte Cofano: all at less than one
hour’s drive from Erice.

More information about the «Ettore Majorana» Foundation and Centre
for Scientific Culture can be found on the WWW at the following address:

http://www.ccsem.infn.it

PLEASE NOTE
Participants must arrive on September 16, not later than 7 pm.                 

M. BUBALLA – A. FAESSLER – J. WAMBACH
DIRECTORS OF THE SCHOOL

A. ZICHICHI
EMFCSC PRESIDENT OF THE CENTRE

Search for the neutrinoless double beta decay
• M. AGOSTINI, Gran Sasso Science Institute (GSSI), L’Aquila,  IT

Neutrinos and structure formation in the universe
• M. ARCHIDIACONO, RWTH, Aachen, DE

The KATRIN experiment
• G. DREXLIN, KIT, Karlsruhe, DE

The electron capture in Ho-163 experiment, ECHo
• L. GASTALDO, University of Heidelberg, DE

IceCube: building a new window on the universe
• F. HALZEN, WIPAC, Madison, WI, US

Dark matter and neutrinos
• J. JOCHUM, University of Tuebingen, DE

Electron capture and the neutrinos mass
• G. KUNDE, LANL, Los Alamos, NM, US

Neutrinos from supernova and compact object mergers
• G. McLAUGHLIN, North Carolina State University, Raleigh, NC, US

Sterile neutrinos
• S. MERTENS, MPI for Physics, Munich, DE

Search for the cosmic neutrino background
• C. TULLY, Princeton University, Princeton, NJ, US

The neutrino hierarchy problem and possible solutions
• P. VOGEL, Caltech, Pasadena, CA, US

Neutrino physics with JUNO and the experimental solution of the
Hierarchy Problem
• W. WANG, Sun Yat-Sen University, Guangzhou, PRC

Summary talk
• T. LASSERRE, CEA Saclay, FR; TU Muenchen, DE

«ETTORE MAJORANA» FOUNDATION AND CENTRE FOR SCIENTIFIC CULTURE
TO PAY A PERMANENT TRIBUTE TO GALILEO GALILEI, FOUNDER OF MODERN SCIENCE

AND TO ENRICO FERMI, THE “ITALIAN NAVIGATOR”, FATHER OF THE WEAK FORCES

TOPICS AND LECTURERS



At the end of Inflation the Universe 
was empty, cold and bare…           



After reheating a very slight excess 
of matter was somehow generated

+ few



Giving the observed baryon 
asymmetry of the Universe 

⌘B =
nB � nB̄

n�
=

nB

n�
⇡ 6⇥ 10�10



Dark Matter?
heic1506 — Science Release



Dark Energy?



The Standard Model

dR
dR

dR

eR

eR
eR

dR
dR

dR

uR

uR

uR

uR

uR

uR cR
cR

cR tR
tR

tR

µR

⌧R

⌧R

µR

U(1)Y

SU(3)C

⌫atmR

⌫atmR ⌫atmR

⌫solR

⌫solR

⌫decR

⌫decR

SFK 1510.02091
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Origin of quark and lepton masses?



New physics from flavour Sheldon Stone

1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.
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Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a
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Tri-maximal Mixing

Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c

13

= (1� s2
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)1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,
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(c ) Following the hint, one finds,
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a ⇡ �(r/2) cos �  ! ✓
23

� 45� ⇡ � ✓
13p
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i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓
23

= 40� � 50� and ✓
13

= 8� � 9�, leading
to |✓

23

�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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The Lepton Mixing Angles
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  Is CP violated in the leptonic sector? (Probably)
    Is the atmospheric angle in first or second octant?
  Neutrino mass: NO or IO ?

Open Questions
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Figure 1: The probability that a particular neutrino mass state ⌫i with mass mi contains a particular charged
lepton mass basis state (⌫e, ⌫µ, ⌫⌧ ) is represented by colours. The left and right panels of the figure are referred
to as normal or inverted mass squared ordering, respectively, referred to as NO or IO. The value of the lightest
neutrino mass is presently unknown but there is a cosmological limit: m

1

+ m
2

+ m
3

< 0.23 eV [33]. For
example, if m

1

= 0, then NO would give m
2

= 0.0086 eV and m
3

= 0.050 eV, hence m
1

+ m
2

+ m
3

⇡ 0.06 eV.
While for IO with m

3

= 0, we would find m
2

⇡ m
1

= 0.050 eV, hence m
1

+ m
2

+ m
3

⇡ 0.10 eV. Prospects for
future cosmological limits approaching this value are discussed in [34].

by a product of Euler rotations: (⌫e, ⌫µ, ⌫⌧ )T = R
23

R
13

R
12

(⌫
1

, ⌫
2

, ⌫
3

)T where Rij is a real orthogonal
rotation matrix in the ij plane, as shown in Eq.4 (with the phase set to zero) and depicted in Fig.2.

The measured mixing angles depend on whether the neutrino masses are in the NO or the IO pattern
as shown in Fig.3. Tri-bimaximal mixing would correspond to sin2 ✓

23

= 1/2 and sin2 ✓
13

= 1/3, and
indicated by the dashed lines in Fig.3, which translates into ✓

23

= 45�, ✓
12

= 35.26�. The current best
lepton mixing angle one sigma ranges are displayed in Table 1 for the NO case: ✓

23

⇡ 41.4� ± 1.6�,
✓
12

⇡ 33.2� ± 1.2�, ✓
13

⇡ 8.45� ± 0.15�. These values are extracted from the two recently updated global
fits of [38, 39]. The non-zero reactor angle excludes the original version of tri-bimaximal mixing with
a zero reactor angle. The alternative tri-bimaximal-reactor mixing is evidently excluded by about two
sigma. In addition, there is weak evidence for a non-zero CP violating phase. Present data (slightly)
prefers a normal ordered (NO) neutrino mass pattern, with a CP phase � = �100� ± 50�, and (more
significantly) non-maximal atmospheric mixing. The meaning of the CP phase � is discussed below.

The PDG [41] advocates CKM and the PMNS mixing matrices being parameterised by unitary
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Loop Models of Neutrino Mass

Figure 1: Tree-level and radiative seesaw mechanisms.

exists no such study in the literature with the focus put on the neutrino sector in radiative
models, and we aim to start this enterprise by a study devoted to the RGEs of the Ma-

model. Naturally, this could be extended to other radiative models for neutrino masses,
such as the Zee-Babu model [25, 26] or the Aoki-Kanemura-Seto model [27, 28]. In par-

ticular the interplay between the scalar and the lepton sectors has the potential to reveal
interesting new effects, as we will already see in this study.

However, we want to stress that several studies are already available which investigate

e.g. limiting cases of our framework or subsets (or generalizations of subsets) of certain
sectors of the Ma-model. A particular example for such a case would be the investigations

of the RGEs of a general Two Higgs Doublet Model (THDM). Whenever applicable in
this paper, we will refer to the corresponding works treating these related frameworks.

This paper is organized as follows: In Sec. 2, we review Ma’s scotogenic model and
discuss the different effective theories arising when subsequently integrating out the heavy
neutrino fields. Next, in Sec. 3, we discuss in detail the matching conditions at the

boundaries between the respective theories, which in our case have to be consistently
imposed at 1-loop level. Our main results, the explicit RGEs at 1-loop level are presented

in Sec. 4. After that, we present a numerical exemplifying study (in a slightly simplified
framework) in Sec. 5, in order to illustrate how to use our results. We finally conclude in

Sec. 6.

2 Ma’s scotogenic model

The so-called scotogenic model has been discussed by Ma [24], and in the following we will
therefore call it Ma-model for simplicity. In this section, we will first review this model,

and then discuss some of its low-energy limits, which we will also use in our calculations
later on.
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FIG. 1: The Cocktail Diagram

tests (EWPT) and collider searches, and we comment on
possible consequences for neutrinoless double beta de-
cay (0νββ). We then briefly discuss future detection
prospects, before concluding.

II. A MODEL FOR NEUTRINO MASSES.

In addition to the SM fields, the model includes two
SU(2)L singlet scalars (singly and doubly charged) S+

and ρ++, and a scalar doublet Φ2. We introduce a Z2

symmetry under which the Φ2 and S+ fields are odd,
whereas ρ++ and the SM fields are even. The Z2 sym-
metry should be unbroken after EW symmetry breaking,
so that the lightest Z2-odd state remains stable and can
provide a dark matter particle candidate. Given the sym-
metry and particle content of the model, the lagrangian
will include the following relevant terms leading to lepton
number violation

− ∆L =
λ5
2

(

Φ†
1Φ2

)2

+ κ1 ΦT
2 iσ2Φ1 S

− + κ2 ρ
++S−S−

+ξs ΦT
2 iσ2Φ1 S

+ ρ−− + Cab lcRa
lRb

ρ++ + h.c.. (1)

The SM scalar doublet Φ1 and the inert scalar doublet
Φ2 can in the unitary gauge be written as

Φ1 =
1√
2

(

0
h

)

+

(

0
v

)

, Φ2 =
1√
2

(

Λ+

H0 + i A0

)

, (2)

where v ≃ 174 GeV is the vacuum expectation value of
Φ1. After EW symmetry breaking, and for κ1 ̸= 0, the
charged states Λ+ and S+ will mix (the mixing angle
being β), giving rise to two charged mass eigenstates

H+
1 = sβ S

+ + cβ Λ+, H+
2 = cβ S

+ − sβ Λ+, (3)

with sβ , cβ = sinβ, cosβ respectively.
The lagrangian in Eq. (1) breaks lepton number explic-

itly by two units [9], which generates a Majorana mass

for the left-handed neutrinos. The Z2 symmetry pre-
cisely forbids all terms that would have generated neu-
trino masses at either 1 or 2-loop order, and therefore
the leading contributions to neutrino masses appear at 3-
loops through the ‘Cocktail Diagram’ shown in Figure 1.
In the basis where the charged current interactions are

flavour-diagonal, the charged leptons e, µ, τ being then
mass eigenstates, and after summing up the contributions
from the six different finite 3-loop diagrams in Figure 1
(coming from H+

1,2, A0 and H0 running in the loop), the
Majorana neutrino mass matrix reads:

mν
ab ≃ Cab xa xb s22β

Iν

(16 π2)3
A , (4)

where s2β = sin(2β), xa = ma/v for a = e, µ, τ , and

A =
(∆m2

+)
2 ∆m2

0

µ0 µ+

(κ2 + ξsv)

m2
ρ v2

. (5)

The factor Iν is a dimensionless O(1) number emerging
from the 3-loop integral after all generic factors have been
factorized out. Its exact value depends on the specific
mass spectrum, and we have estimated its value using
the numerical code SecDec [10]. The reduced masses are
µ−1
0 = m−1

H0
+m−1

A0
and µ−1

+ = m−1
H1

+m−1
H2

.
The dependence of mν

ab on the mass differences ∆m2
0 =

m2
A0

−m2
H0

and ∆m2
+ = m2

H2
−m2

H1
signals a GIM-like

mechanism at play in Eq. (4), which can be easily under-
stood noticing that ∆m2

0 ∝ λ5 and ∆m2
+ ∝ κ1. In the

limit λ5 → 0 the lagrangian in Eq. (1) conserves lepton
number and no Majorana neutrino mass can be gener-
ated, while in the limit κ1 → 0, the leading contribution
to mν

ab will appear at a higher loop order.

We now analyze the ability of the model to reproduce
the observed pattern of neutrino masses and mixings.
The standard parametrization for the neutrino mass ma-
trix in terms of three masses m1,2,3, three mixing angles
θ12, θ23, θ13 and three phases δ, α1, α2 reads

mν = UT mν
D U with mν

D = Diag (m1,m2,m3) (6)

U = Diag
(

eiα1/2, eiα2/2, 1
)

×
⎛

⎝

c13c12 −c23s12−s23c12s13eiδ s23s12−c23c12s13eiδ

c13s12 c23c12−s23s12s13eiδ −s23c12−c23s12s13eiδ

s13e−iδ s23c13 c23c13

⎞

⎠

with sij ≡ sin(θij) and cij ≡ cos(θij). A global fit to
neutrino oscillation data after the recent measurement
of θ13 (see for example [11]) gives ∆m2

21 ≡ m2
2 − m2

1 =
7.62+0.19

−0.19× 10−5eV2,
∣

∣∆m2
31

∣

∣ ≡
∣

∣m2
3 −m2

1

∣

∣ = 2.55+0.06
−0.09×

10−3eV2, s212 = 0.320+0.016
−0.017, s213 = 0.025+0.003

−0.003, and
s223 = 0.43+0.03

−0.03 (0.61+0.02
−0.04) if in the first (second) oc-

tant for θ23. Neutrino oscillations are not sensitive to
the Majorana phases α1 and α2 nor to the absolute neu-
trino mass scale, while the value of the CP phase δ is
beyond current experimental sensitivity. In the inverted

Scotogenic model Cocktail model 

x
W-W-
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la HlbLcnLa HnLbLc

x

p p+k p+k+q p

k k+q
q

Figure 2: Two-loop diagram for the neutrino mass (left) and momentum-assignments for
its computation (right).

3 Neutrino mass

The vertex S–W–W leads to a neutrino mass at 2-loop level, as displayed in Fig. 2. This

diagram has been computed e.g. in Ref. [1], and it is intimately related to the Zee-Babu

integral [9, 10, 11, 12].

4 An incomplete to-do list

A fairly incomplete to-do list for the proposed study is the following:

• We should verify that the operator described in Sec. 2 is indeed the one with the

lowest mass dimension, and we should explicitly compute all resulting vertices and

the Feynman rule.

• We should explicitly compute the diagram displayed in Fig. 2 in R⇠ gauge and derive

the resulting constraints on the neutrino mass.

• We should investigate extensively the low energy neutrino phenomenology of the

setting, as well as the constraints resulting from non-observations of LFV processes.

(Could be very similar to the Zee-Babu model!)

• We should investigate the collider phenomenology resulting from the vertex dis-

played in Fig. 1, with a particular focus on the combined constraints resulting from

low-energy leptonic physics and high energy collider physics.

• ...

4

Effective theory

Zee (one loop) Babu (two loop)

SFK, Merle, Panizzi



Minimal Type I seesaw

⌫L ⌫L

Y ⌫ Y ⌫

MR

hHui hHui

⌫R ⌫R

Figure 4: The seesaw mass insertion diagram responsible for the light e↵ective LH Majorana neutrino mass m⌫ =
�mDM�1

R (mD)T where the Dirac neutrino mass is mD = Y ⌫hHui = Y ⌫vu.

where we write Hu rather than H in anticipation of a two Higgs doublet extension of the SM, with
mD = vuY ⌫ where vu = hHui.

Collecting together Eqs.34,35 (assuming Eq.33 terms to be absent) we have the seesaw mass matrix,

�
⌫L ⌫c

R

� ✓
0 mD

(mD)T MR

◆ ✓
⌫c

L

⌫R

◆
. (37)

Since the RH neutrinos are electroweak singlets the Majorana masses of the RH neutrinos MR may be
orders of magnitude larger than the electroweak scale. In the approximation that MR � mD the matrix
in Eq.37 may be diagonalised to yield e↵ective Majorana masses of the type in Eq.33,

m⌫ = �mDM�1

R (mD)T . (38)

The seesaw mechanism formula is represented by the mass insertion diagram in Fig.4. This formula
is valid below the EW scale. Above the EW scale, but below the scale MR, the seesaw mechanism is
represented by the Weinberg operator in Eq.2, whose coe�cient has the same structure as the seesaw
formula in Eq.38.

The light e↵ective LH neutrino Majorana mass m⌫ is naturally suppressed by the heavy scale MR,
but its precise value depends on the Dirac neutrino mass mD. Suppose we fix the desired physical
neutrino mass to be m⌫ = 0.1 eV, then the seesaw formula in Eq.38 relates the possible values of mD

to MR as shown in Fig.5. This illustrates the huge range of allowed values of mD and MR consistent
with an observed neutrino mass of 0.1 eV, with MR ranging from 1 eV up to the GUT scale, leading to
many di↵erent types of seesaw models and phenomenology, including eV mass LSND sterile neutrinos,
keV mass sterile neutrinos suitable for warm dark matter (WDM), GeV mass sterile neutrinos suitable
for resonant leptogenesis and TeV mass sterile neutrinos possibly observable at the LHC (for a review
see e.g. [61] and references therein). In this review we shall focus on the case of Dirac neutrino masses
identified with charged quark and lepton masses, leading to a wide range of RH neutrino (or sterile
neutrino) masses from the TeV scale to the GUT scale, which we refer to as the classic seesaw model.
For example, if we take mD to be 1 GeV (roughly equal to the charm quark mass) then a neutrino mass
of 0.1 eV requires a RH (sterile) neutrino mass of 1010 GeV.
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m⌫ =
m2

Dirac

MR



Seesaw formula m2
Dirac = m⌫MR +m2
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Theoretical perspective

RVFLOODWLRQV�WR�EH�VWXGLHG��7KH�ODWWHU�EHKDYH�GLIIHUHQWO\�LI�'LUDF�&3�
violation is present, with oscillations that are being enhanced or 
VXSSUHVVHG��GHSHQGLQJ�RQ�WKH�YDOXHV�RI�WKH�'LUDF�SKDVH�

The other mixing parameters, namely the three mixing angles, 
are already quite well-determined. Angle e13 went from being 
XQNQRZQ�MXVW�RYHU�IRXU�\HDUV�DJR�WR�EHLQJ�WKH�EHVW�PHDVXUHG��
WKDQNV�WR�UHVXOWV�IURP�WKH�'D\D�%D\�DV�ZHOO�DV�5(12�DQG�'RX�
ble Chooz experiments, while the JUNO experiment in China 
plans to reach a sub-per-cent accuracy for the e12 angle after a few 
years of operation. e23 is particularly interesting because it could 
be exactly maximal, therefore pointing towards a symmetry in 
WKH�OHSWRQ�Á�DYRXU�VHFWRU��RU�FRXOG�GHYLDWH�IURP�WKLV�E\�VHYHUDO�
degrees. Current and future long-baseline oscillation experi-
ments will have the best chance of determining e23, which will 
be critical for disentangling the different models proposed to 
explain the observed mixing pattern.

Massive considerations
As for the values of the neutrino masses themselves, we already 
have a very precise measurement of the absolute values of the 
two mass-squared differences – which differ by a factor of about 
����À�JXUH���DERYH���%XW�ZH�VWLOO�ODFN�NH\�SLHFHV�RI�LQIRUPDWLRQ��
namely which neutrino is the lightest, defining the neutrino 

mass ordering, and what its mass scale is. The sign of the solar 
mass-squared difference is determined by solar-neutrino oscilla-
tions, but that of the atmospheric one is unknown. If it turns out to 
be positive, corresponding to m3 > m1, neutrino masses exhibit the 
so-called “normal” ordering. The alternative scenario, m3 < m1, 
LPSOLHV�DQ�́ LQYHUWHGµ�RUGHULQJ��À�JXUH���DERYH���

Knowing the mass ordering and scale is important for theorists 
because different theoretical models predict different patterns, 
DQG�DOVR�IRU�H[SHULPHQWDOLVWV�VHDUFKLQJ�IRU�VSHFLÀ�F�VLJQDWXUHV��,W�
strongly affects the rate of neutrinoless double-beta decay, sub-
VWDQWLDOO\�LPSDFWLQJ�RQ�WKH�SURVSHFWV�RI�GLVFRYHULQJ�WKH�0DMRUDQD�
nature of neutrinos, while in the early universe heavier neutrinos 
suppress the growth of large-scale structures at small scales. The 
ordering of the masses also changes the way in which neutrinos 
propagate over long distances in media such as the Earth, due to 
weak interactions with the background of electrons, protons and 
QHXWURQV��7KLV�JLYHV�QHXWULQRV�DQ�HIIHFWLYH�PDVV�WKDW�PRGLÀ�HV�
their energies and the mixing: neutrino oscillations are enhanced 
for normal mass ordering and suppressed for inverted ordering, 
with the opposite happening in the case of antineutrinos. 

Experiments such as the long-baseline experiment NOvA, 
which measures a neutrino 
beam produced 810 km away 
at Fermilab, exploit these 
effects to hunt for the neutrino 
mass ordering (see p32). With 
'81(��ZKLFK�ZLOO�RSHUDWH�DW�D�
distance of 1300 km, and new 
atmospheric-neutrino observa-
WRULHV�VXFK�DV�3,1*8��25&$�
and INO, as well as JUNO, we 
expect to resolve this issue in 
the next 5–10 years. 
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Fig. 2. Current measured values of the oscillation parameters for 
a global 3i oscillation analysis. The different contours 
correspond to the 2D allowed regions at 1m, 90%, 2m, 99% and 
3m CL (2 d.o.f.). The coloured region and black lines correspond 
to two different analyses using the LEM and LID NOvA data. 
For the atmospheric mass-squared difference, the normal- (NO) 
and inverted-ordering (IO) allowed regions are shown 
separately. The allowed region for b��VKRZLQJ�WKH�À�UVW�SRVVLEOH�
hints of CP-violation, is shown together with e13.
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)LJ�����7KH�Á�DYRXU�FRQWHQW�RI�WKH�WKUHH�QHXWULQR�PDVV�HLJHQVWDWHV��
with the mass eigenstates arranged in increasing mass-squared 
order for the two mass orderings (the overall mass scale is 
unknown). A mass eigenstate, ii��LV�D�VXSHUSRVLWLRQ�RI�Á�DYRXU�
states ie (green), i+ (blue) and io (red), with a fraction 
corresponding to µU_iµ

2. Varying the Dirac phases, b� changes 
WKLV�IUDFWLRQ�IRU�HDFK�PDVV�HLJHQVWDWH��7KH�À�JXUH�LV�VLPLODU�WR�
that in 3K\V��5HY��'�69 117301 and adapted in arXiv:1602.04816.

Knowing the 
neutrino mass 
ordering still leaves 
open the question 
of the overall mass 
scale. 
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Theoretical perspective

The most important question about neutrinos concerns the type 
RI�PDVVHV�WKH\�KDYH��6R�IDU��DOO�WKH�NQRZQ�IHUPLRQV�DUH�RI�WKH�'LUDF�
type: their particles and antiparticles have opposite charges and 
WKH\�SRVVHVV�D�'LUDF�PDVV�WKDW�DULVHV�IURP�WKH�FRXSOLQJ�WR�WKH�+LJJV�
À�HOG��1HXWULQRV�FRXOG�EHKDYH�LQ�WKH�VDPH�ZD\��EXW�EHFDXVH�WKH\�DUH�
electrically neutral it is possible that neutrinos acquire mass via a 
different mechanism. Indeed, neutrinos and antineutrinos might be 
LQGLVWLQJXLVKDEOH��FRQVWLWXWLQJ�ZKDW�LV�FDOOHG�D�0DMRUDQD�SDUWLFOH�
DIWHU�(WWRUH�0DMRUDQD�ZKR�SURSRVHG�WKH�FRQFHSW�LQ�������8QOLNH�
'LUDF�À�HOGV��ZKLFK�KDYH�IRXU�FRPSRQHQWV��0DMRUDQD�À�HOGV�KDYH�
RQO\�WZR�G�R�I��6XFK�D�SDUWLFOH�FDQQRW�SRVVHVV�DQ\�FKDUJH��QRW�HYHQ�
a lepton number.

A matter of conservation 
The question of the nature of neutrinos is therefore intrinsically 
UHODWHG�WR�WKH�FRQVHUYDWLRQ�RI�WKH�OHSWRQ�QXPEHU��,Q�WKH�60��WKH�
lepton number is a global accidental symmetry that happens to be 
preserved thanks to the gauge symmetries and particle content, 
but it does not have a dynamic role because there are no associ-
ated gauge bosons. The question arises whether the ultimate 
theory of particles and their interactions is lepton-number violat-
ing or not. The most promising way to answer this question is to 
search for neutrinoless double-beta decay, whereby certain nuclei 

spontaneously undergo two beta decays at once, without producing 
any neutrinos. This process directly violates lepton-number con-
VHUYDWLRQ�DQG�ZRXOG�LPSO\�WKDW�QHXWULQRV�DUH�0DMRUDQD�SDUWLFOHV��
motivating a broad international experimental programme (see 
panel on previous page).
$�VHFRQG�PDMRU�TXHVWLRQ�LV�ZKHWKHU�WKH�&3�V\PPHWU\�LV�YLRODWHG�

in the lepton sector, as it is in the quark one. CP violation is one of 
the three key ingredients in baryogenesis and leptogenesis, which 
are needed to dynamically explain the observed matter–antimatter 
asymmetry of the universe (see panel overleaf). There are three 
SRVVLEOH�VRXUFHV�RI�&3�YLRODWLRQ�LQ�WKH�OHSWRQ�VHFWRU��WKH�'LUDF�
phase, which is the analogue of the one in the quark sector, and 
WZR�0DMRUDQD�SKDVHV�WKDW�DSSHDU�RQO\�LI�QHXWULQRV�DUH�0DMRUDQD�
SDUWLFOHV��,I�QHXWULQRV�DUH�'LUDF�SDUWLFOHV��WKH�ODWWHU�FDQ�EH�URWDWHG�
away as is done in the quark sector. 
7KH�À�UVW�KLQWV�RI�OHSWRQLF�&3�YLRODWLRQ�FDPH�UHFHQWO\�IURP�FRP�

ELQLQJ�GDWD�IURP�&KLQD·V�'D\D�%D\�H[SHULPHQW�ZLWK�PHDVXUH�
ments at long-baseline accelerator facilities, in particular T2K and 
NOvA. These seem to indicate a preference for a nonzero value of 
WKH�&3�YLRODWLQJ�'LUDF�SKDVH��VHH�À�JXUH�����,W�LV�WRR�HDUO\�WR�WHOO��EXW�
YHU\�DPELWLRXV�SODQV�²�LQFOXGLQJ�WKH�SURSRVHG�'HHS�8QGHUJURXQG�
1HXWULQR�([SHULPHQW��'81(��LQ�WKH�86�DQG�7�+.�LQ�-DSDQ�²�
aim to settle the issue by allowing both neutrino and antineutrino 
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Fig.1. (Left) Zenith-angle distributions of e-like (top) and +-like 
events (bottom) recorded by the Super-Kamiokande experiment in 
1998. In the latter, the hatched region shows the Monte Carlo 
H[SHFWDWLRQ�IRU�QR�RVFLOODWLRQV��ZKLOH�WKH�EROG�OLQH�LV�WKH�EHVW�À�W�
expectation for i+ A io oscillations. For downward-going muon 
neutrinos (cose > 0), corresponding to neutrinos produced in the 
atmosphere on average about 20 km above the detector, data and 
theory are in good agreement. For up-going muon neutrinos 
(cose < 0) that have travelled through the Earth, however, there is a 
clear disagreement between data and prediction, signalling i+ A io 
oscillations. (Above) Starting from basic quantum mechanics and 
assuming that a neutrino is produced in a superposition of different 
mass eigenstates (assumed here to be just two for simplicity) with 
different masses, this equation describes the oscillation probability 
of a muon neutrino into a tau neutrino, as a function of neutrino 
energy, E, and distance travelled, L. The current data for the 
oscillation parameters are used.
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(i.e. the see-saw mechanism with the light e�ective neutrino Majorana mass matrix

m� = mDM�1
R mDT

) is

L�
eff =

(�LmD
atm)(m

D
atm

T
�c
L)

Matm
+

(�LmD
sol)(m

D
sol

T
�c
L)

Msol

⇤
+
(�LmD

dec)(m
D
dec

T
�c
L)

Mdec

⌅
. (11)

Sequential dominance (SD) then corresponds to the third term being negligible, the
second term subdominant and the first term dominant:

mD
atmm

D
atm

T

Matm
� mD

solm
D
sol

T

Msol

⇤
� mD

decm
D
dec

T

Mdec

⌅
, (12)

which immediately predicts a normal neutrino mass hierarchy,

m3 � m2 [ � m1 ] , (13)

which is the main prediction of SD.
We have labelled the dominant right-handed neutrino and Yukawa couplings mainly

responsible for the atmospheric neutrino mass m3 as “atm”, the subdominant ones
mainly responsible for the solar neutrino mass m2 as “sol”, and the almost decoupled
(sub-sub-dominant) ones mainly responsible for m1 as “dec”. Note that the mass or-
dering of right-handed neutrinos is not yet specified. We shall order the right-handed
neutrino masses as M1 < M2 < M3, and subsequently identify Matm,Msol,Mdec with
M1,M2,M3 in all possible ways.

It is clear that in the limit that m1 ⇥ 0 then the sub-sub-dominant right-handed
neutrino and its associated couplings labelled by “dec” decouple completely and the
above model reduces to a two right-handed neutrino model. In that limit we simply
drop the third terms [in square brackets] in Eqs.8-13 in anticipation of this.

3 The Two Right-Handed Neutrino Model with Nor-
mal Hierarchy and Dominant Texture Zero

3.1 Derivation of the Master Formula

Without assuming SD, we write the see-saw matrices in a simple notation as,

mD =

⇧

⌥
0 a
e b
f c

⌃

� , MR =

�
Y 0
0 X

⇥
. (14)

where we have written the complex Dirac masses as a, b, c, d, e, f with d = 0 and the
real positive right-handed neutrino masses as Y,X. We are in a basis where the charged
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neutrino and its associated couplings labelled by “dec” decouple completely and the
above model reduces to a two right-handed neutrino model. In that limit we simply
drop the third terms [in square brackets] in Eqs.8-13 in anticipation of this.

3 The Two Right-Handed Neutrino Model with Nor-
mal Hierarchy and Dominant Texture Zero

3.1 Derivation of the Master Formula

Without assuming SD, we write the see-saw matrices in a simple notation as,

mD =

⇧

⌥
0 a
e b
f c

⌃

� , MR =

�
Y 0
0 X

⇥
. (14)

where we have written the complex Dirac masses as a, b, c, d, e, f with d = 0 and the
real positive right-handed neutrino masses as Y,X. We are in a basis where the charged

6

�
�
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The Littlest Seesaw
Low energy neutrino mass matrices after seesaw:

charged-lepton flavour basis is given by

m⌫ = ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+mbe
i⌘

0

B@
1 n (n� 2)

n n2 n(n� 2)

(n� 2) n(n� 2) (n� 2)2

1

CA , (2.1)

where in addition to n there are three free real parameters: two parameters with the

dimension of mass ma and mb which are proportional to the reciprocal of the masses of

the dominant and subdominant right-handed neutrinos, and a relative phase ⌘. A second

version of this model has also been proposed, based on an S4 ⇥U(1) symmetry, where the

second and third rows and columns of the mass matrix are swapped [19]. In this paper, we

discuss both these versions for the case where n = 3, with the two versions of the model

denoted as LSA and LSB;

m⌫
LSA = ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+mbe
i⌘

0

B@
1 3 1

3 9 3

1 3 1

1

CA , (2.2)

m⌫
LSB = ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+mbe
i⌘

0

B@
1 1 3

1 1 3

3 3 9

1

CA . (2.3)

Although, in the most minimal set-up, the relative phase ⌘ is a free parameter, it has

been shown that in some models the presence of additional Z3 symmetries can fix the

phase ei⌘ to a cube root of unity [25], with ⌘ = 2⇡/3 the preferred value for LSA and

⌘ = �2⇡/3 for LSB as determined by current data [17]. This restriction gives the model

greater predictivity by reducing the number of free parameters to two, and we will give

these cases special attention while also showing some results for the case with ⌘ left free.

Diagonalizing the mass matrices above leads to predictions for the neutrino masses as

well as the angles and phases of the unitary PMNS matrix, UPMNS, which describes the

mixing between the three left-handed neutrinos

UT
PMNSm

⌫UPMNS =

0

B@
m1 0 0

0 m2 0

0 0 m3

1

CA , (2.4)

where UPMNS is defined by

UPMNS =

0

B@
c12c13 s12c13 s13e�i�

�s12c23 � c12s13s23ei� c12c23 � s12s13s23ei� c13s23
s12s23 � c12s13c23ei� �c12s23 � s12s13c23ei� c13c23

1

CA

0

B@
ei

�1
2 0 0

0 ei
�2
2 0

0 0 1

1

CA (2.5)

with sij = sin ✓ij and cij = cos ✓ij . All of the parameters in this decomposition are therefore

predicted in terms of the 2 (or 3) real parameters in Eqs. (2.2) and (2.3). Due to the minimal

assumption of only two right-handed neutrinos, the lightest neutrino is massless m1 = 0

and the mass-squared di↵erences, which are the only combinations of masses accessible to

– 4 –

Depends on 3 parameters: ma, mb, eta
SD ma>>mb predicts NO with m1=0



around ⌘ = ±2⇡/3 for LSA and LSB, respectively. That two input parameters should

give a good description of five observables, within their one sigma errors, is ostensibly

a remarkable achievement, indeed perhaps better than might be expected on statistical

grounds. However, due to the very tight constraints on ⌘ from ✓13 and m2/m3, we still find

some tension with the value of ✓23 even when allowing ⌘ to vary. As with the case with ⌘

fixed, this tension exists only at the 1� level, where close to maximal ✓23 is excluded.

-1.0

-0.5

0.0

0.5

1.0

/

0.025 0.050 0.075 0.100 0.125 0.150 0.175

mb/ma

0.025 0.050 0.075 0.100 0.125 0.150 0.175

mb/ma

LSA LSB

12 13 23 m2/m3

Figure 5: Regions in the mb/ma-⌘ plane corresponding to the experimentally determined

1� ranges for all mixing angles, � and the ratio of neutrino masses m2/m3 for LSA (left

panel) and LSB (right panel).

3.3 Fitting LS models to global fit data

In order to provide a more concrete measure of the agreement between the predictions of

the model and existing data, as well as to make further predictions of the less well measured

parameters, we have performed a �2 fit to the four cases discussed above: LSA and LSB

with ⌘ fixed and free. As a proxy for the full data sets of previous experiments, our fits use

the results of the NuFIT 3.0 global analysis [28]. This analysis combines the latest results

(as of fall 2016) of solar, atmospheric, long baseline accelerator, and long, medium and

short baseline reactor neutrino experiments, to obtain a combined fit to the six standard

neutrino oscillation parameters. We use the �2 data provided by NuFIT, for the case

where normal mass ordering is assumed, combining both the 1D �2 data for each mixing

parameter with the 2D �2 data to include correlations between parameter measurements

�2
Fit(⇥) =

X

✓i2⇥
�2
1D(✓i) +

X

✓i 6=✓j2⇥

�
�2
2D(✓i, ✓j)� �2

1D(✓i)� �2
1D(✓j)

�
, (3.1)

– 9 –
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Best Fit LS Predictions
LSA LSB NuFIT 3.0

⌘ free ⌘ fixed ⌘ free ⌘ fixed global fit

ma [meV] 27.19 26.74 26.95 26.75

mb [meV] 2.654 2.682 2.668 2.684 —

⌘ [rad] 0.680⇡ 2⇡/3 �0.673⇡ �2⇡/3

✓12 [�] 34.36 34.33 34.35 34.33 33.72+0.79
�0.76

✓13 [�] 8.46 8.60 8.54 8.60 8.46+0.14
�0.15

✓23 [�] 45.03 45.71 44.64 44.28 41.5+1.3
�1.1

� [�] -89.9 -86.9 -91.6 -93.1 �71+38
�51

�m2
21 [10�5eV2] 7.499 7.379 7.447 7.390 7.49+0.19

�0.17

�m2
31 [10�3eV2] 2.500 2.510 2.500 2.512 2.526+0.039

�0.037

��2 / d.o.f 4.1 / 3 5.6 / 4 3.9 / 3 4.5 / 4 —

Table 1: Results of our fit of existing data to LSA and LSB with ⌘ left free and for ⌘ = 2⇡
3

for LSA and ⌘ = �2⇡
3 for LSB. The results of the NuFIT 3.0 (2016) global fit to standard

neutrino mixing are shown for the normal ordering case for comparison.

only on the single parameter r, the predictions of LS form lines of allowed solutions in

each plane, corresponding to sum-rules between the oscillation parameters. For example,

Fig. 7a corresponds to the TM1 sum rule in Eq. (2.6), while Figs. 7b to 7f correspond to

those in Eq. (A.6) or to combinations of these sum rules. It can be seen that very strong

restrictions are placed on the allowed values of the less well measured parameters, ✓12, ✓23
and �. For the remaining angle, ✓13, around two thirds of the NuFIT 3.0 range remains

viable in LS.

Figure 8 shows the allowed regions of parameter space for pairs of variables including

the mass-squared di↵erences. In these plots, as the mass-squared di↵erences can depend on

both ma and mb independently, we see regions of allowed values instead of lines. For each

of these planes, any point will fully determine both input parameters ma and mb, and so

these contours correspond exactly to the equivalent regions shown in Fig. 6. In addition to

the tight constraints on ✓12, ✓23 and � already mentioned, in Figs. 8b and 8e it can be seen

that the allowed range of ✓13 is correlated with that of both �m2
21 and �m2

31, suggesting

that combining future measurements of these parameters could provide a better probe of

LS than the individual parameter measurements alone. The ability of future experiment to

exclude the model then depends on both the predictions of the model seen here, combined

with the sensitivity of experiments to measurements of the parameters in the region of

interest predicted by LS, which is the focus of the next section.

4 Sensitivity of future experiments

In order to understand the potential for future experiments to exclude the LS models,

we have performed simulations of a combination of accelerator and reactor experiments,

– 11 –

NO with m1=0

Near maximal 
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RG Corrections in SM (are large)
GUT Matm Msol EW

13(deg) 7.62574 7.81215 8.47979 8.4798

12(deg) 34.5348 34.4977 34.3575 34.3572

23(deg) 45.1425 42.9816 42.3751 42.3744

m2(meV) 13.537 12.2035 12.1317 8.73113

m3(meV) 87.6802 75.4657 69.8112 50.2431

CP(deg) -89.2885 -88.0086 -90.3508 -90.3507

CP(deg) -38.9558 -40.649 -38.9917 -38.9917
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RG Corrections in SUSY (are small)
Case A, MSUSY= 1 TeV, tan =5,

-
b=0.6

GUT Msol Matm EW

13(deg) 8.41036 8.41346 8.41449 8.41694

12(deg) 34.3737 34.4593 34.4613 34.4648

23(deg) 45.5262 45.4286 45.4309 45.4401

m2(meV) 5.06633 5.24637 6.02352 8.53262

m3(meV) 30.1179 30.9015 35.4702 50.2415

CP(deg) -87.6504 -87.8008 -87.8032 -87.8023
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Figure 5: Case A - MSSM with M
SUSY

= 1 TeV, M
atm

= 1012 GeV and M
sol

= 1015 GeV

Figure 6: Case B - MSSM with M
SUSY

= 1 TeV, M
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= 1012 GeV and M
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= 1015 GeV
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Direct Models

Charged 
Lepton Sector

Neutrino 
Sector

S,U  preserved 

G
T preserved   

�l �⌫

Family 
symmetry 

Generators 
S,T,U

Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.

h�SUi ⇠ 3 ⇠
0

@
2

�1
�1

1

A , preserves SU breaks T, U,

and the two important SU preserving alignments for 30 flavons,

h�0
atm

i ⇠ 30 ⇠
0

@
0
1

�1

1

A , preserves SU breaks T, U, (68)

h�0
sol

i ⇠ 30 ⇠
0

@
1
3

�1

1

A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S
4

can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �l

⇤

LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS
2

⇥ ZU
2

of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM

2

mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.

30
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Semi-Direct Models  

Charged lepton 
correction sum 

rule

TM2 mixing  
sum rule

TM1 mixing    
sum rule

G

GR mixing TB mixing TM2 mixing   
sum rule

 S4 A5

S,U broken
   SU preservedT broken

U broken
S preserved

A4

Figure 13: The semi-direct approach to models of lepton mixing. Since TB and GR mixing are excluded, some of the
symmetry must be broken in either the charged lepton sector (T breaking) or the neutrino sector (U breaking). In the
semi-direct approach some symmetry always remains as shown leading to mixing sum rule predictions. For the case of
S

4

, the figure indicates that T breaking (with S, U and hence TB preserved in the neutrino sector) leads to charged
lepton correction sum rules. Similarly, U breaking (with T preserved in the charged lepton sector) can lead to TM

1

or
TM

2

mixing and sum rules, depending on whether SU or S is preserved in the neutrino sector. The A
4

group does not
contain U and (with T and S preserved), leads to the TM

2

mixing and sum rule. Note that the TM
2

mixing sum rule is
experimentally disfavoured.

5.3 Semi-direct models

In the “semi-direct” approach, one may use smaller discrete family groups such as S
4

or A
5

. If applied
in a “direct” way, such groups would lead to either TB or BM (for S

4

) or GR mixing (for A
5

), as in
Fig.13. To obtain a non-zero reactor angle, one of the generators T or U must be broken. Thus the
semi-direct models do not enforce the full residual symmetry.

Consider the following two interesting possibilities depicted in Fig.13:

1. The ZT
3

symmetry of the charged lepton mass matrix is broken, but the full Klein symmetry
ZS

2

⇥ZU
2

in the neutrino sector is respected. This corresponds to having charged lepton corrections,
with solar sum rules discussed in section 3.4.

2. The ZU
2

symmetry of the neutrino mass matrix is broken, but the ZT
3

symmetry of the charged
lepton mass matrix is unbroken. In addition either ZS

2

or ZSU
2

(with SU being the product of S
and U) is preserved. This leads to either TM

1

mixing (if ZSU
2

is preserved); or TM
2

mixing (if ZS
2

is preserved). Then we have the atmospheric sum rules as discussed in section 3.3.

In A
4

there is no U generator to start with, but it is possible that ZS
2

preserved. This could also arise
of S

4

is broken to A
4

at higher order [51]. In such cases, only half the Klein symmetry ZS
2

is preserved,
corresponding to the S generator of A

4

or S
4

, together with the ZT
3

symmetry of the diagonal T generator
enforcing the diagonality of the charged lepton mass matrix. However, the S generator implies TM

2

mixing and sum rules which are disfavoured due to the solar angle being smaller than its tri-bimaximal

31

N.B. A4 
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(with small 
groups)

DISCRETE SYMMETRY 
MODELS ARE ALIVE 

AND WELL



c
o
s

δ

θ13

BM
θ12 = 36.0

35.0
34.0
33.0
32.0
31.0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 8  8.2  8.4  8.6  8.8  9

c
o
s

δ

θ13

TBM
θ12 = 36.0

35.0
34.0
33.0
32.0
31.0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 8  8.2  8.4  8.6  8.8  9

c
o
s

δ

θ13

GR1

θ12 = 36.0

35.0
34.0
33.0
32.0
31.0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 8  8.2  8.4  8.6  8.8  9

c
o
s

δ

θ13

GR3

31.0
32.0
33.0
34.0
35.0

θ12 = 36.0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 8  8.2  8.4  8.6  8.8  9

c
o
s

δ

θ13

GR2
θ12 = 36.0

35.0
34.0
33.0
32.0
31.0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 8  8.2  8.4  8.6  8.8  9

c
o
s

δ

θ13

HEX

θ12 = 36.0

35.0
34.0
33.0
32.0
31.0

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 8  8.2  8.4  8.6  8.8  9

Figure 2: The predictions for cos � generated by the solar sum rules for BM and TBM (top
row), GR1 and GR3 (middle row), GR2 and HEX (bottom row). In each plot, the true value
of ✓13 is given by the abscissa, the value of ✓12 is denoted by the colour of the band, and the
width of the band is generated by varying ✓23 over its 3� allowed interval.
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FIG. 2. The current experimental status of the sum rules in Eq. (3) given by λ = 1 and λ = −0.5, with a0 = 0. The diagonal
lines show the regions predicted for a and cos δ given the 3σ bounds on r, assuming both normal ordering (Fig. 2(a)) and
inverted ordering (Fig. 2(b)). The vertical line shows the current best-fit for a where the projected sensitivity is indicated by
the red bands; the dark (light) grey regions show the current 1σ (2σ) allowed intervals [6].

given model, our general sum rule can be used to predict
the value cos δ. Fixing a, we define cos δ by the mapping
from r which is found by inverting Eq. (3); r is then
allowed to vary across its 1σ interval [6] and the image of
this mapping is taken to be the range of potential values
for cos δ.
In Fig. 2 we show the predictions of our two specific

sum rules and their compatibility with the current global
data on a (the grey regions). We have also shown (the
red bands) the projected sensitivity to the a parameter as
reported in Ref. [18]. These projections are for the global
parameter sensitivity in 2025 assuming only the current
experimental programme: 5 years of data from T2K, 6
from NOνA, and 3 years each for Double Chooz, RENO
and Daya Bay. As we cannot predict the future best-fit
value, the horizontal location of the predicted regions is
largely irrelevant, and in Fig. 2 they have been arbitrarily
centred around the current best-fit value.
We see that the predictions of δ for these two models

are currently consistent with the global data. However,
the overlap for some of these 1σ intervals can be seen to
require some quite specific correlations: for example, λ =
−0.5 and NO requires cos δ ! 0.5. With the projected
sensitivity to a, these correlations could create tension
with the future data, and the consistency of these models
will start to become rather constrained. For example, in
a strictly CP-conserving theory, sin δ must vanish. The
corresponding value of cos δ would then be difficult to
reconcile with the sum rule given by λ = 1, leading to
a possible exclusion of such a sum rule. The limiting
factor for the general exclusion of these models with the
current experimental programme will be the attainable
precision on cos δ. It has been shown that, in the most
optimistic case, the current experimental programme will

only be able to provide a 3σ region for δ with a width
of around 300◦[19]. It is clear, therefore, that testing
mixing sum rules will be a task to be addressed by a
next-generation neutrino oscillation facility, one which
focuses on precision.

V. TESTING SUM RULES AT
NEXT-GENERATION FACILITIES

With the knowledge of the value of θ13 the campaign
for a next-generation facility, designed to make preci-
sion measurements of the neutrino mixing parameters,
is greatly strengthened. It is likely that within the ex-
tant experimental neutrino physics programme, we will
see hints towards the measurement of two of the most im-
portant unknowns in the conventional neutrino flavour-
mixing paradigm: the sign of the atmospheric mass-
squared difference and the value of the CP-violating
phase, δ. It is, however, unlikely that these questions
will be resolved at an acceptable statistical confidence
level: the projected 3σ CP-violation discovery fraction
with the current experimental programme only reaches
around 20% of the parameter space [18] and it is only
modestly higher for the determination of the mass order-
ing at around 40%. The desire for a definitive 5σ answer
to these questions provides the first motivation for the
construction of a next-generation neutrino oscillation fa-
cility, capable of precision measurements of the oscilla-
tion parameters. In this work, we will focus on two such
designs: the low-energy neutrino factory (LENF) and a
wide-band superbeam (WBB).
The WBB is an extrapolation of existing technology,

using a more powerful version of the conventional neu-
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Figure 1. The 5� allowed regions for the solar predictions shown in Table 1 after 6 years of
data taking by JUNO.

our simulation, we assume a 20 kton liquid scintillator detector with a linear energy uncertainty
of 0.03/

p
E. The JUNO facility will detect neutrinos from 10 nearby reactors; however, we

model this by a single source at a baseline distance given by the power weighted average of
52.5 km and a reactor power of 36 GW [4]. We have normalised our spectrum to produce
105 events, including a 5% normalisation uncertainty. In Fig. 1, we show the allowed regions
at 5� significance for the models shown in Table 1. We see that only two of the 5� intervals
overlap, which allows for a strong model discrimination. The ability for JUNO to exclude these
models independently of their atmospheric sum rules provides a great complementarity between
the reactor and long-baseline programmes. Furthermore, the two indistinguishable models for
JUNO predict very di↵erent atmospheric sum rules,

a = ±1

6
� 1p

6
r cos � (S4 T↵–S2) and a =

'p
2
r cos � (A5 Te–S1),

where ' = 1+
p
5

2 is the golden ratio, and we expect these to be distinguishable with a superbeam
for most of the parameter space [1].

4. Summary

The next generation of neutrino oscillation experiments, with their focus on precision
measurements of the underlying parameters, will allow certain classes of models with discrete
flavour symmetries to be thoroughly tested. In Ref. [1], the role of a long-baseline superbeam
experiment (modelled after LBNO or LBNE) has been shown to be able to exclude these
correlations for a large fraction of parameter space. In this contribution, we have highlighted
the potential for experimental exclusion of these models at a circa 50 km reactor experiment
based on the JUNO facility. By testing the solar predictions to high accuracy, such a facility
will be able to independently distinguish between almost all models under consideration. The
complementarity between reactor and long-baseline experiments will provide a stringent test of
the idea that residual symmetries are responsible for the structure of the PMNS matrix.
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Gf m Tα,Si s a0 λ

A4

3 Te,S2 0.012 0 −0.5

3 Tµ,S2 0.012 0 −0.5

3 Tτ ,S2 0.012 0 −0.5

S4

3 Te,S1 −0.024 0 1

4 Tµ,S2 −0.124 −0.167 −0.408

4 Tτ ,S2 −0.124 0.167 −0.408

A5

5 Te,S1 −0.118 0 1.144

5 Te,S2 −0.079 0 −0.437

5 Tµ,S2 0.054 0.067 −0.532

5 Tτ ,S2 0.054 −0.067 −0.532

TABLE I. The phenomenologically viable sum rules of the
form a = a0 + λr cos δ (where a, r are the atmospheric and
reactor angle deviations from tri-bimaximal mixing and δ is
the CP violating oscillation phase) arising in the Hernandez-
Smirnov framework for finite von Dyck groups. In this table,
m gives the order of the generator which controls the charged
lepton mass matrix, Tm

α = 1, while Si is the generator of the
von Dyck group that is identified with one of the generators
of the Klein symmetry of the neutrino mass matrix (with the
other Klein symmetry generator being unrelated to the von
Dyck group, as in so-called semi-direct models). Analytical
expressions for the solar angle deviation from tri-bimaximal
mixing s and the constants a0 and λ are given in Table II. The
numerical values are obtained for the current best-fit value of
sin2 2θ13 = 0.089 [1].

details of their derivation. We see that by choosing dif-
ferent residual generators, we find 8 distinct sum rules of
the type of Eq. (3) which are compatible with the current
phenomenological data.
A number of the scenarios that we have identified in

Table I can be explained in terms of the TB and GR
matrices given in Eqs. (1) and (2). The three scenarios
based on an A4 symmetry all lead to a value of the second
column of the PMNS matrix fixed at its tri-bimaximal
value; similarly, the S4 scenario with the generator choice
Te–S1 fixes the prediction of the first column to be tri-
bimaximal. The scenario based on A5 with unbroken
generators Te–S1 (Te–S2) fixes the first (second) column
of the PMNS matrix to the equivalent values of the GR
mixing matrix.

III. VALIDITY OF LINEARIZATION

In general, the correlations predicted by flavour sym-
metric models are non-linear relations between the os-
cillation parameters. We have discussed how the form
of these correlations simplifies when only the first-order
terms in the parameters s, r and a are retained, and we
will now address the impact of higher-order terms. We
consider the model presented in Ref. [16], which fixes
the elements of the first column of the PMNS matrix to
their tri-bimaximal values. As a function of r and a, this
model predicts that cos δ is given by the composition of
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FIG. 1. A comparison between the exact correlation and the
sum rule for the model presented in Ref. [16], which fixes the
elements of the first column of the PMNS matrix to their tri-
bimaximal values. The solid (empty) region denotes the exact
(linearized) prediction for cos δ which is produced by varying
r over its current 3σ allowed interval.

the following functions:

cos δ =
(−2 sin2 θ12 + cos2 θ12r2) cos(2θ23)√

2r sin(2θ12) sin(2θ23)
,

cos θ12 =
2

√

3(2− r2)
, and sin θ23 =

1 + a√
2

.

When linearized, these relations lead to the simpler
expression cos δ = a/r. In Fig. 1 we have computed the
predictions of cos δ as a function of a for both the exact
relation and the sum rule, with r varied within its exper-
imentally allowed 3σ region. We see that for this model
the difference between the two treatments is small. The
impact of higher order corrections can only be assessed
on a case by case basis once the exact correlations are
known; however, due to the smallness of the r and a
parameters, we expect the linear approximation to be a
good one. This is confirmed by our simulations for the
known exact correlations, and therefore we will focus
our later analysis on the linearized relations. This also
allows us to treat the universality that we have observed
in Section II, all viable sum rules that we have identified
are either close to λ = 1 or λ = −1/2. For the classes of
phenomenologically viable models that we have found,
the differences between similar sum rules are small and
will be very challenging to measure.

IV. COMPATIBILITY OF SUM RULES WITH
EXISTING AND PROJECTED DATA

The global neutrino oscillation data already constrains
models which exhibit discrete flavour symmetries. For a
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Figure 15: Some possible candidate unified gauge groups which are subgroups of E
6

. We shall focus on SU(5),
SO(10) and the Pati-Salam gauge group SU(4)C ⇥ SU(2)L ⇥ SU(2)R (in pale blue).

where r, b, g are quark colours and c denotes CP conjugated fermions.
The SU(5) gauge group may be broken to the SM by a Higgs multiplet in the 24 representation

developing a VEV,

SU(5) ! SU(3)C ⇥ SU(2)L ⇥ U(1)Y , (87)

with

5 = dc(3,1, 1/3) � L(1,2, �1/2), (88)

10 = uc(3,1, �2/3) � Q(3,2, 1/6) � ec(1,1, 1), (89)

where (Q, uc, dc, L, ec) is a complete quark and lepton SM family. This does not include the RH neutri-
nos, whose CP conjugates are singlets of SU(5), ⌫c = 1, and may be added separately. Higgs doublets
Hu and Hd, which break EW symmetry in a two Higgs doublet model, may arise from SU(5) multi-
plets H5 and H5, providing the colour triplet components can be made heavy. This is known as the
doublet-triplet splitting problem.
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where r, b, g are quark colours and c denotes CP conjugated fermions.
The SU(5) gauge group may be broken to the SM by a Higgs multiplet in the 24 representation

developing a VEV,

SU(5) ! SU(3)C ⇥ SU(2)L ⇥ U(1)Y , (87)

with

5 = dc(3,1, 1/3) � L(1,2, �1/2), (88)

10 = uc(3,1, �2/3) � Q(3,2, 1/6) � ec(1,1, 1), (89)

where (Q, uc, dc, L, ec) is a complete quark and lepton SM family. This does not include the RH neutri-
nos, whose CP conjugates are singlets of SU(5), ⌫c = 1, and may be added separately. Higgs doublets
Hu and Hd, which break EW symmetry in a two Higgs doublet model, may arise from SU(5) multi-
plets H5 and H5, providing the colour triplet components can be made heavy. This is known as the
doublet-triplet splitting problem.
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Figure 1: Diagrams responsible for the masses and mixings of the up-type quarks.
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Figure 2: Diagrams responsible for the masses of the down-type quarks and charged leptons.

From the diagrams shown in Fig. 2, integrating out the fermion messengers X, which
acquire large masses as a result of either explicit mass terms or GUT scale Higgs VEVs,
we obtain e↵ective operators of the form

W
down

= d
33

T
3

H
¯

5

�⌧

M
F + d

22

T
2

H
45

H
24

�µ

M2

F + d
11

T
1

H
¯

5

⇠�e

h⇤
24

i2F + d
12

T
1

H
¯

5

⇠�µ

h⇤
24

i hH
24

iF, (2.3)

where dij are O(1) couplings. The light MSSM doublet Hd is a combination of the
doublets inside H

¯

5

and H
45

, as discussed in Section 4.2, hence the d
22

term also leads
to a relevant Yukawa coupling. The alignment of the respective flavon VEVs of �e,µ,⌧

(discussed in Section 3) is

h�ei = ve

0

@
1
0
0

1

A h�µi = vµ

0

@
0
1
0

1

A h�⌧ i = v⌧

0

@
0
0
1

1

A , (2.4)

such that, apart from d
12

, the contraction appearing with T
1,2,3 isolates the respective

F
1,2,3 family. This would lead to diagonal Yukawa structures if not for the additional

term connecting T
1

(�µF ) (see Fig. 2d).
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G
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G
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SU(2)L ⇥ U(1)Y SU(5) PS SO(10)

S
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[29] [142]
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4

[30, 34, 51, 53,64,143–145] [146–149] [68, 150,151]
T 0 [152] [153]
S

4

[31, 51, 53, 145,155] [156,157] [154] [158]
A
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[161,162]
�(27) [163] [164]
�(96) [165,166] [167] [168]
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QN [170]
other [171] [172] [173]

Table 3: Flavoured GUTs which include discrete family symmetry groups and the papers that use these sym-
metries to successfully describe the solar, atmospheric and reactor neutrino data.

vuTiTj(v⇠/M)6�i�j, where vu is the VEV of Hu. The resulting symmetric Yukawa matrix for up-type
quarks is

Y u
ij ⇠

0

@
⇠̃4 ⇠̃3 ⇠̃2

⇠̃2 ⇠̃
1

1

A (120)

where ⇠̃ = h⇠i /M ⇠ 0.1 yielding a strong up-type mass hierarchy, with quark mixing arising in large
part from the up-sector.

The field ⇠ is in fact quite ubiquitous. As well as explaining the structure of the up-type quark mass
matrix, it is also involved in the mass hierarchy for down-type quarks and charged leptons. And it is
responsible for the mass scales for the RH neutrinos. Furthermore it yields a highly suppressed µ term
⇠ (v⇠/M)8M

GUT

.
The down-type and charged lepton Yukawa matrices Y d ⇠ Y e are obtained from terms like F�TH,

leading to nearly diagonal matrices,

Y d
LR ⇠ Y e

RL ⇠

0

BBBBB@

h⇠i ve

v2

⇤

24

h⇠i vµ

v
⇤

24

vH
24

0

0
vH

24

vµ

M2

0

0 0
v⌧

M

1

CCCCCA
(121)

where ve,µ,⌧ are flavon VEVs, while v
⇤

24

and vH
24

are VEVs of heavy Higgs ⇤
24

and H
24

. Here we
include the subscripts LR to emphasise the role of the o↵-diagonal term to LH mixing from Y d. This
term introduces CP violation into the CKM matrix via the phase of h⇠i. Note that the o↵-diagonal term
in Y e

RL gives mainly RH mixing, with only a subleading negligible contribution to LH charged lepton
mixing ✓e

12

⇠ me/mµ.

45

Froggatt-NielsenUp-type quarks

di↵erent pairs, for simplicity and because they are all expected to be at a similar mass
scale, we take masses of all such pairs to be M and set it equal to the GUT scale in our
numerical estimates. We emphasise that the successful predictions of the model in the
lepton sector (namely predicting the PMNS matrix) is independent of the specific values
of these mass parameters.

2.1 Up quarks

Apart from the top quark mass, which originates from a lowest order Yukawa coupling,
the remaining up-type quark Yukawa couplings appear from higher order terms that
result from combining several renormalisable terms involving ⌃i messengers and the GUT
singlet superfield ⇠. To be precise, the up-type quark Yukawa couplings arise from ⌃i

messenger tower diagrams shown in Fig. 1. For example, the most suppressed coupling
arises from the first diagram in Fig. 1. Other less suppressed couplings arise from the
diagrams where at the base one has the respective TiTj, with a shorter tower leading up
to H

5

. The least suppressed coupling, the renormalisable H
5

T
3

T
3

operator responsible
for the top quark mass, is the last diagram in Fig. 1.

The e↵ective superpotential responsible for the up-type Yukawa couplings is

W
up

= uijH5

TiTj

✓
⇠

M

◆nij

. (2.1)

The resulting symmetric Yukawa matrix for up-type quarks is

Y u
ij = uij

✓h⇠i
M

◆nij

⇠
0

@
⇠̃4 ⇠̃3 ⇠̃2

⇠̃2 ⇠̃
1

1

A , (2.2)

where ⇠̃ = h⇠i /M ⇠ 0.1. The explicit form of Y u is given in Eq. 2.18 and includes the
coe�cients uij, which are O(1) and, by enforcing CP conservation at the GUT scale,
necessarily real. Thus, the hierarchy of the up quark masses as well as the CKM mixing
angles are given by powers of ⇠̃. Due to the structure of this matrix, any phase introduced
by h⇠i can be reabsorbed by appropriate redefinition of the three Ti fields, so Y u does
not contain a source of CP violation.

2.2 Down quarks, charged leptons and flavons

When considering the Yukawa structures of down quarks and charged leptons we must
inevitably discuss A

4

triplet flavons.6 The assignments of all the flavons under the family
symmetries appear in Table 1. Indeed, since the three families of F transform as a triplet
of A

4

(see Table 1), all TiH¯

5

F terms require a contraction with at least one A
4

triplet
flavon to be invariant.

6As a point of terminology, we refer to as “flavons” any superfields that are GUT singlets transforming
non-trivially under the family symmetry and that get VEVs. In particular not only A

4

but strictly
speaking also Z

9

and Z
6

are family symmetries, so we also refer to ⇠ as a “flavon”.

5
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From the diagrams shown in Fig. 2, integrating out the fermion messengers X, which
acquire large masses as a result of either explicit mass terms or GUT scale Higgs VEVs,
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From the diagrams shown in Fig. 2, integrating out the fermion messengers X, which
acquire large masses as a result of either explicit mass terms or GUT scale Higgs VEVs,
we obtain e↵ective operators of the form

W
down

= d
33

T
3

H
¯

5

�⌧

M
F + d

22

T
2

H
45

H
24

�µ

M2

F + d
11

T
1

H
¯
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⇠�e

h⇤
24

i2F + d
12

T
1

H
¯

5

⇠�µ

h⇤
24

i hH
24

iF, (2.3)

where dij are O(1) couplings. The light MSSM doublet Hd is a combination of the
doublets inside H

¯

5

and H
45

, as discussed in Section 4.2, hence the d
22

term also leads
to a relevant Yukawa coupling. The alignment of the respective flavon VEVs of �e,µ,⌧

(discussed in Section 3) is

h�ei = ve

0

@
1
0
0

1

A h�µi = vµ

0

@
0
1
0

1

A h�⌧ i = v⌧

0

@
0
0
1

1

A , (2.4)

such that, apart from d
12

, the contraction appearing with T
1,2,3 isolates the respective

F
1,2,3 family. This would lead to diagonal Yukawa structures if not for the additional

term connecting T
1

(�µF ) (see Fig. 2d).
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Neutrinos with 
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The flavons �
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where v
atm

and v
sol

are generally complex. Denoting the phases of VEVs as ⇢i = arg(vi),
only the relative phase ⇢

atm

�⇢
sol

between the VEVs is physically relevant, and is con-
strained to a discrete set of values, as discussed in Section 3.3. The flavon ⇠ (already
responsible for the up quark masses) is also acting as a Majoron by generating hierar-
chical right-handed neutrino masses. At the e↵ective level, the Dirac terms result from
coupling the neutrinos (and H

5

) to �
atm

and �
sol

via the flavon ✓
2

(an A
4

singlet carrying
Z
6

charge). The corresponding diagrams with associated messengers appear in Fig 3.
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Figure 3: Renormalisable diagrams leading to neutrino e↵ective terms. Diagrams (a) and (b)
are responsible for neutrino Yukawa terms (leading to Dirac masses) while (c) and (d) give
right-handed neutrino Majorana mass terms.

In turn, the Majorana mass term for N c
atm

is also non-renormalisable and we refer to the
superfield � as the respective messenger. It couples only to N c

atm

and simply provides the
non-renormalisable mass term for N c

atm

, suppressed relative to the mass of N c
sol

. As � has
the quantum numbers of a third right-handed neutrino, one can also consider this field as
mediating a double seesaw mechanism, responsible for the N c

atm

mass. The mixing term
⇠6

M5N c
atm

N c
sol

, though allowed by the symmetries, is absent as there is no combination of
messengers able to produce it.

We write h⇠i = |v⇠|ei⇢⇠ , where ⇢⇠ is chosen from a discrete set of available phases, discussed
in Section 4.1 (see Eq. 4.2). This phase originates from the spontaneous CP violation of
a discrete Abelian symmetry [9, 10], in our case the Z

9

. We will now show that ⇢⇠ and
⇢
atm

�⇢
sol

fix the relative phases within the e↵ective neutrino mass matrix and consequently
the leptonic mixing angles.

In a Supersymmetric (SUSY) model, the relevant terms in the superpotential giving
neutrino masses, in the diagonal charged lepton basis, are
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c
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+ yisolHLiN
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N c
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◦ Explains quark mass hierarchies, mixing angles and the CP phase. 
◦ Reproduces Littlest Seesaw predictions (SUSY) 
◦ Near maximal atmospheric mixing, normal hierarchy, m1=0  

◦ Z9 flavour symmetry fixes the phase η to be 2pi/3  

◦ Leptogenesis fixes Matm ~ 1010  GeV     

◦ Renormalisable at GUT scale, SU(5) breaking potential, 
spontaneously broken CP.  

◦ The MSSM is reproduced with R-parity from discrete Z4R .  

◦ Doublet-triplet splitting via the Missing Partner mechanism.  
◦ mu term is generated at the correct scale.  
◦ Proton decay is sufficiently suppressed.  
◦ Solves strong CP problem through the Nelson-Barr mechanism . 

Summary of  A4 x SU(5)



Many other possibilities
G

GUT

G
FAM

SU(2)L ⇥ U(1)Y SU(5) PS SO(10)

S
3

[29] [150]
A

4

[36, 49, 51, 62,151–154] [155–158] [66, 159,160]
T 0 [161]
S

4

[31, 49, 51, 154,163] [164,165] [162] [166]
A

5

[51, 169] [170]
T

7

[171,172]
�(27) [173] [174]
�(96) [175,176] [177] [178]
DN [179]
QN [180]
other [181] [182] [183]

Table 3: Flavoured GUTs which include discrete family symmetry groups and the papers that use these sym-
metries to successfully describe the solar, atmospheric and reactor neutrino data.

Example of a flavoured GUT: A
4

⇥ SU(5)

We now describe an example of a recent flavoured GUT from Table 3, namely an A
4

⇥SU(5) SUSY
GUT model [158] with the following features:

• It is renormalisable at the GUT scale, with an explicit SU(5) breaking sector.

• The MSSM is reproduced with R-parity emerging from a discrete Z

R
4

.

• Doublet-triplet splitting is achieved through the Missing Partner mechanism [184].

• A µ term is generated at the correct scale.

• Proton decay is su�ciently suppressed.

• It solves the strong CP problem through the Nelson-Barr mechanism [185,186].

• It explains the hierarchical quark masses and mixing angles.

• It reproduces the Littlest Seesaw model with spontaneously broken CP symmetry.

Apart from A
4

⇥ SU(5) the model also involves the discrete symmetries Z

9

⇥ Z

6

⇥ Z

R
4

. It is
renormalisable at the GUT scale, but many e↵ects, including most fermion masses, come from non-
renormalisable terms that arise when heavy fields (so called “messenger fields”) are integrated out.
Unwanted or potentially dangerous terms are forbidden by the symmetries and the prescribed messenger
sector, including any terms that would generate proton decay or strong CP violation. Such terms may
arise from Planck scale suppressed terms, but prove to be su�ciently small. Due to the completeness of

44

Mu-Chun



Conclusions
• Origin of neutrino mass is unknown (     BSM)

• Roadmap of possibilities

• Attractive possibility is Type I seesaw

• Littlest seesaw predicts PMNS with RG corrections in 
SM large (SUSY small RG corrections, maximal        )         

• Discrete Family Symmetry NOT EXCLUDED by 

• Discrete Family Symmetry PREDICTS Sum Rules

• GUTs treats quarks and leptons on same footing

• Family symmetry x GUTs unified theory of 
forces and flavour - in progress…  

)

✓13

✓23


