Neutrino Physics with MicroBooNE

Georgia Karagiorgi, on behalf of the MicroBooNE Collaboration

39th International School of Nuclear Physics Neutrinos in Cosmology, in Astro-, Particle and Nuclear Physics Erice, Sicily Sep. 16-24, 2017

Proton path

Neutrino transformed into μ-meson

Or.

The 'Neutrino Event' Nov. 13, 1970 — World's first observation of a neutrino in a hydrogen bubble chamber

Collision creates π-meson Invisible neutrino collides with proton

... 45 years later ...

One of the first neutrino events observed in the MicroBooNE Liquid Argon Time Projection Chamber

Run 3493 Event 41075, October 23rd, 2015

625 pictures per plane per second ~2700 x 3200 = 8.6M pixels each

(each 3mm x ~0.8mm)

Can resolve minimum-ionizing particles (MIPs) to few overlapping protons based on local ionization energy deposition

LATTPC detectors in ${f V}$ physics

- Large, continuous, fully active volume acts as both target and detector medium
- High density
 → high interaction probability
 → higher statistics for same exposure
- High ionization and scintillation yield and high transparency
 → low detection thresholds, higher detection efficiency
- High digitization rates, segmentation
 → high position and dE/dx resolution
 → better particle identification
- Relatively inexpensive

ightarrow scalable to larger and larger sizes

Electron/Photon Separation

A single e and a single γ are indistinguishable in traditional, Cherenkov detectors; v_e measurements are plagued by NC $\pi^0 \rightarrow \gamma\gamma$ or other single-photon backgrounds...

but not in a LArTPC!

Electron/Photon Separation

Neutrino events with γ are differentiated on the basis of:

- 1. Detached shower vertex from neutrino interaction vertex
- 2. Larger dE/dx deposited at the beginning of the shower (2 MIP vs 1 MIP)

Typical e/ γ separation: ~90% \rightarrow Ideal technology for v_e measurements

MicroBooNE

Intermediate-scale liquid argon time projection chamber detector. First large-scale LArTPC operating in the US!

Aims to demonstrate LArTPC technology (scalability and performance) and carry out a rich neutrino (and beyond) physics program!

MicroBooNE

Intermediate-scale liquid argon time projection chamber detector. First large-scale LArTPC operating in the US!

Situated in the Booster Neutrino Beamline, on-site at Fermilab, and just upstream of MiniBooNE (same neutrino beam, E~500 MeV, similar baseline L~500m). Also views NuMI beam at off-axis.

Ideal experiment for:

LEDERMAN SCIENCE CENTER

MINOS

NOVA

SBN FAR DETECTOF

- ightarrow investigating the MiniBooNE anomalous low energy excess
- \rightarrow performing neutrino cross section measurements at E ~ a few hundred MeV

BOOSTER RING

470m

540m

- constraining light sterile neutrino parameter space as part of the
 - Short Baseline Neutrino Program (see talk by O. Palamara)

Aerial view of Fermilab

MiniBooNE detector

MILSON HALL

MiniBooNE DETECTOR

MicroBooNE detector

MicroBooNE/

LArTF

BNB proton target

SciBooNE

DETECTOR

SBN

TARGET

MicroBooNE

MicroBooNE Detector Parameters

- 2.5 m x 2.3 m x 10.2 m TPC
- 170 (87) tons total (active) LAr mass
- 2.5m drift length (~2ms drift time with -70kV on cathode)
- 3 wire planes (8,256 wires):
 0°, ±60° from vertical, 3 mm wire separation
- 32 PMT's, for t₀/drift coordinate determination, and triggering for empty neutrino beam spill rejection

Cross section of detector:

MicroBooNE Status

- Has been operational (with neutrino beam on) since Oct. 2015
- Has collected >6E20 POT to date from the BNB (~150,000 interactions)!
- Comparable event rate statistics also from the NuMI beam line (off axis)
- Has undergone several upgrades:
 - Continuous TPC readout for supernova searches (see later slides)
 - Installation of Cosmic Ray Tracker

CRT tracker installed around MicroBooNE detector

Cumulative POT

MicroBooNE Status

7 publications and 20 public notes!

MicroBooNE

Data

— MuCS Monte Carlo

E

-

2000

- MicroBooNE collaboration, "The Pandora Multi-Algorithm Approach to Automated Pattern Recognition of Cosmic Ray Muon and Neutrino Events in the MicroBooNE Detector", arXiv:1708.03135, submitted to Eur. Phys. J. C.
- MicroBooNE collaboration, "Measurement of Cosmic Ray Reconstruction Efficiencies in the MicroBooNE LAr TPC Using a Small External Cosmic Ray Counter", arXiv:1707.09903, submitted to JINST
- MicroBooNE collaboration, "Noise Characterization and Filtering in the MicroBooNE Liguid Argon TPC", arXiv:1705.07341, JINST 12, P08003 (2017)
- MicroBooNE collaboration, "Michel Electron Reconstruction Using Cosmic Ray Data from the MicroBooNE LAr TPC", arXiv:1704.02927, JINST 12, P09014 (2017)
- MicroBooNE collaboration, "Determination of Muon Momentum in the MicroBooNE LAT TPC Using an Improved Model of Multiple Coulomb Scattering", arXiv:1703.06187. submitted to JINST
- MicroBooNE collaboration, "Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber", arXiv:1611.05531, JINST 12, P03011 (2017)
- MicroBooNE collaboration, "Design and Construction of the MicroBooNE Detector", arXiv:1612.05824, JINST 12, P02017 (2017)

MiniBooNE anomalous low energy excess:

Excess of v_e CCQE-like events observed in the MiniBooNE cherenkov detector, in a v_μ -dominated beam, at L/E ~ 1m/MeV

Multiple interpretations have been put forward... yet inconclusive...

MicroBooNE Physics Goals: 1) Investigation of MiniBooNE anom

E.g. using deep-learning-based reconstruction

Using Convolutional Neural Networks \rightarrow a revolutionary image analysis technique! \rightarrow Well suited for LArTPC's!

Successful in identification and differentiation among different particle types.

[JINST 12, P03011 (2017)]

Sample	Electron	Photon	Muon	Pion	Proton
Detection Accuracy (%)	77.8 +/- 0.7	83.4 +/- 0.6	89.7 +/- 0.5	71.0 +/- 0.7	91.2 +/- 0.5
Most Frequent MisID (%)	γ (19.9)	e-(15.0)	π ⁻ (5.4)	µ⁻(22.6)	µ⁻ (4.6)

E.g. using deep-learning-based reconstruction

Also capable of:

- Neutrino interaction finding
- Neutrino interaction ID
- Neutrino vertex finding

[JINST 12, P03011 (2017)]

Ongoing efforts toward 1e + 1p selection:

Ultimately, all LEE analyses aim to maximize sensitivity to an excess above background prediction:

If excess is observed, is it consistent with MiniBooNE? Need to know: Under which interpretation assumption(s)?

Ongoing, joint effort with MiniBooNE collaboration: Unfolding observed MiniBooNE excess into "underlying model prediction" for MicroBooNE

Given a model assumption:

- Derive MiniBooNE v_e CCQE reconstruction and selection Response Matrix "A"
- Unfold observed excess into raw prediction; unfolding methods
 - Singular Value Decomposition unfolding
 - D'Agostini Iterative Bayesian
 Unfolding
- Extract "correction function" for first-principles MonteCarlo prediction in MiniBooNE → "model"
- Apply model in MicroBooNE simulation

A contains all detector, reconstruction and CCQE selection efficiencies and effects. Constructed using MiniBooNE Monte Carlo.

- For e-like low energy searches: Constraining intrinsic background rate and overall uncertainty by way of measuring v_{μ} CC event rates (flux x cross-section)

Need independent (signal-blind) samples to validate simulation (flux, cross-section, detector performance), reconstruction, analysis methods...

Excess significance: Need also to consider systematic uncertainties!

- Constraining rate and overall uncertainty on mis-identified backgrounds:
 - NC π⁰
 - TPC-external neutrino interactions
 - cosmogenic interactions
- For e-like low energy searches: Constraining intrinsic background rate and overall uncertainty by way of measuring v_{μ} CC event rates (flux x cross-section)

Need independent (signal-blind) samples to validate simulation (flux, cross-section, detector performance), reconstruction, analysis methods...

E.g. using Pandora-based reconstruction

Pandora: a multi-algorithm approach to automated pattern recognition for LArTPC detectors

O(100) specific-task/topology-tailored algorithms used to build an event

PandoraSDK provides the software infrastructure to manage the algorithm chain

[Eur. Phys. J. C 75, No. 9, 439 (2017)]

Ongoing efforts toward 1e + X selection and 1γ + X selection. Focusing on 1μ + 1p selection; offers valuable cross-check and constraint...

E.g. using Pandora-based reconstruction

Ongoing efforts toward 1e + X selection and 1γ + X selection. Focusing on 1μ + 1p selection; offers valuable cross-check and constraint...

Validating simulation and reconstruction using an (un-blinded) muon selection sample:

E.g. Pandora-based reconstruction

Initial efficiency and purity: 30% Eff. at 65% Purity

Validating simulation and reconstruction using an (un-blinded) muon selection sample:

E.g. Pandora-based reconstruction

Initial efficiency and purity: 30% Eff. at 65% Purity

- Selection II Data: Beam On - Beam Off Simulation: selected v"CC+bkgd ⊽. bkgd v_e + ⊽_e bkgd 600E NC bkgd 500E Cosmic bkgd v_u CC true vertex Out of FV bkgd 400E MicroBooNE 300E preliminary 200E 100 0 -0.6 -0.2 0.2 0.6 0.8 -0.4 0.4 cos0
 - Shape-normalized event rates.
 - Demonstrates data/MC agreement, and enables CC inclusive cross-section measurement!

>150,000 v_{μ} CC inclusive interactions expected! Energy range relevant for future experiments, e.g. DUNE. Energy regime probes physics at nucleon level (e.g. nucleon correlations) and much more...

	numu	numubar	nue	nuebar		
CC Total	173302	1407	1469	36		
CC - QE	95296	773	729	17		
CC – RES	75657	604	702	18		
CC – DIS	1607	1.3	29	0.5		
CC - COH	740	29	8.5	0.7		
NC Total	64661	1002	502	17		
NC - QE	35951	633	254	7.0		
NC - RES	27665	358	236	9.4		
NC - DIS	519	1.3	8.8	0.2		
NC - COH	525	10	3.2	0.6		

6.6e20 POT (~3 years)

*Expected rates for 6.6E20 POT (2-3 years of running), not efficiency weighted.

Measurements of v_{μ} CC inclusive final state multiplicity:

Observed Charged Particle Tracks in Neutrino Interactions

*Includes detector, reconstruction, and selection efficiency; backgrounds; all-final-state-track-inclusive. Systematic uncertainties are preliminary.

Nice data/MC agreement with several GENIE tunes!

NC elastic (proton) channel

~20k events on tape! Lower proton threshold compared to fine-grained scintillator detectors

$CC \pi^0$ channel

~10k events on tape! Important for understanding π^0 mis-identification for low energy excess and oscillation analyses

NC elastic (proton) channel

~20k events on tape! Lower proton threshold compared to fine-grained scintillator detectors

$CC \pi^0$ channel

~10k events on tape! Important for understanding π^0 mis-identification for low energy excess and oscillation analyses

MicroBooNE Physics Goals: 3) Astro-particle and exotic physics

Planned searches for:

- Heavy sterile neutrinos
- Dark matter, in BNB beam-dump configuration

Sensitivity studies and proof-of-principle searches for

- Supernova core-collapse neutrino interactions (~10 MeV)
- Neutron-antineutron oscillation, $p \rightarrow Kv$ decay, and other baryon-number-violating signatures

Michel Electrons from stopping cosmic muons offer a calibration source for lowenergy electromagnetic activity.

Michel e candidate from trigger stream

Michel e candidate recorded in lossy-compression stream (dynamic zero suppression)

Summary

MicroBooNE now:

- MicroBooNE has been running in the BNB since Oct. 2015
- Has collected almost (~90%) full dataset necessary for carrying out an investigation of MiniBooNE anomalous excess
- Demonstrating stable operation of large-scale LArTPC's, and promising performance on automated reconstruction, particle- and event-ID.

~1 year timescale:

- Several analyses ongoing (MiniBooNE low energy excess, neutrinoargon interaction cross-sections, astro-particle/exotic physics)
- More results to come!

~few years timescale:

 And as part of the SBN program, MicroBooNE will explore sterile neutrino oscillations with unprecedented sensitivity during the next five years!