Colored particle-in-cell simulations for heavy-ion collisions

International School of Nuclear Physics, 38th Course 21.09.2016, Erice, Sicily

David Müller

with Daniil Gelfand and Andreas Ipp

Institute for Theoretical Physics, Vienna University of Technology, Austria

Der Wissenschaftsfonds.

Introduction

Heavy-ion collision experiments investigate the properties of nuclear matter at high energies.

- Formation and evolution of the quark-gluon-plasma (QGP)?
- How does the QGP become isotropic and thermalized?
- What is the role of boost-invariance?

Various heavy-ion collision experiments:

- LHC (ALICE) @ CERN: Pb+Pb with ~5.5 TeV per nucleon pair. ($\gamma \approx 2700$)
- RHIC @ BNL: Au+Au with ~200 GeV per nucleon pair. ($\gamma \approx 100$)
- RHIC beam energy scan: ~7.7 62.4 GeV ($\gamma \approx 4 30$)

Goal: Simulate heavy-ion collisions in the color glass condensate (CGC) framework with finite nucleus thickness. Possible with colored particle-in-cell (CPIC).

Stages of a heavy-ion collision

Color glass condensate

- The early stages of heavy-ion collisions can be described by **classical effective theory** in the color glass condensate (CGC) framework. [Gelis, Iancu, Jalilian-Marian, Venugopalan, Ann.Rev.Nucl.Part.Sci.60:463-489,2010]
- Hard quarks and gluons are approximated as classical color charges moving at the speed of light generating a classical gauge field.
- The gauge field describes the soft gluons in the nucleus.
- Static field configuration due to time dilation.
- Collision of two such classical fields creates the Glasma. [Gelis, Int.J.Mod.Phys. A28 (2013) 1330001]

Figure from L. McLerran: Proceedings of ISMD08, p.3-18 (2008)

- CGC: Separation of hard and soft degrees of freedom, weak coupling
- Color currents of the nuclei restricted to the light cone and infinitely thin
- Analytical solutions exist for everything except the forward light cone
- Fields in the forward light cone are independent of rapidity η. Reduction from 3D+1 to 2D+1
- Need to solve 2D+1 source-free Yang-Mills equations in the forward light cone with Glasma initial conditions on the light cone

$$D_{\mu}F^{\mu\nu}(\tau,x_T)=0$$

- CGC: Separation of hard and soft degrees of freedom, weak coupling
- Color currents of the nuclei restricted to the light cone and infinitely thin
- Analytical solutions exist for everything except the forward light cone
- Fields in the forward light cone are independent of rapidity η. Reduction from 3D+1 to 2D+1
- Need to solve 2D+1 source-free Yang-Mills equations in the forward light cone with Glasma initial conditions on the light cone

$$D_{\mu}F^{\mu\nu}(\tau,x_T)=0$$

- CGC: Separation of hard and soft degrees of freedom, weak coupling
- Color currents of the nuclei restricted to the light cone and infinitely thin
- Analytical solutions exist for everything except the forward light cone
- Fields in the forward light cone are independent of rapidity η. Reduction from 3D+1 to 2D+1
- Need to solve 2D+1 source-free Yang-Mills equations in the forward light cone with Glasma initial conditions on the light cone

$$D_{\mu}F^{\mu\nu}(\tau,x_T)=0$$

- CGC: Separation of hard and soft degrees of freedom, weak coupling
- Color currents of the nuclei restricted to the light cone and infinitely thin
- Analytical solutions exist for everything except the forward light cone
- Fields in the forward light cone are independent of rapidity η. Reduction from 3D+1 to 2D+1
- Need to solve 2D+1 source-free Yang-Mills equations in the forward light cone with Glasma initial conditions on the light cone

$$D_{\mu}F^{\mu\nu}(\tau,x_T)=0$$

- CGC: Separation of hard and soft degrees of freedom, weak coupling
- Color currents of the nuclei restricted to the light cone and infinitely thin
- Analytical solutions exist for everything except the forward light cone
- Fields in the forward light cone are independent of rapidity η. Reduction from 3D+1 to 2D+1
- Need to solve 2D+1 source-free Yang-Mills equations in the forward light cone with Glasma initial conditions on the light cone

$$D_{\mu}F^{\mu\nu}(\tau,x_T)=0$$

- Extended color currents need to be taken into account.
- Fields depend on rapidity.
- Need to solve full 3D+1 Yang-Mills equation with currents.

$$D_{\mu}F^{\mu\nu}(t, z, x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_T) = 0$$

- Extended color currents need to be taken into account.
- Fields depend on rapidity.
- Need to solve full 3D+1 Yang-Mills equation with currents.

$$D_{\mu}F^{\mu\nu}(t, z, x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_T) = 0$$

- Extended color currents need to be taken into account.
- Fields depend on rapidity.
- Need to solve full 3D+1 Yang-Mills equation with currents.

$$D_{\mu}F^{\mu\nu}(t, z, x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_T) = 0$$

- Extended color currents need to be taken into account.
- Fields depend on rapidity.
- Need to solve full 3D+1 Yang-Mills equation with currents.

$$D_{\mu}F^{\mu\nu}(t, z, x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_T) = 0$$

Nearest-grid-point method (NGP)

- Color currents included, tied to the light-cone
- Sample color charge density with a number of (computational) particles.
- Parallel transport of charges
- NGP interpolation: Current J_{μ} on the grid generated by particle movement.
- J_{μ} as input for field equations of motion on the lattice.

$$D_{\mu}F^{\mu\nu}(t,z,x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t,z,x_T) = 0$$

Nearest-grid-point method (NGP)

- Color currents included, tied to the light-cone
- Sample color charge density with a number of (computational) particles.
- Parallel transport of charges
- NGP interpolation: Current J_{μ} on the grid generated by particle movement.
- J_{μ} as input for field equations of motion on the lattice.

$$D_{\mu}F^{\mu\nu}(t,z,x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t,z,x_T) = 0$$

Nearest-grid-point method (NGP)

- Color currents included, tied to the light-cone
- Sample color charge density with a number of (computational) particles.
- Parallel transport of charges
- NGP interpolation: Current J_{μ} on the grid generated by particle movement.
- J_{μ} as input for field equations of motion on the lattice.

$$D_{\mu}F^{\mu\nu}(t, z, x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_T) = 0$$

Nearest-grid-point method (NGP)

- Color currents included, tied to the light-cone
- Sample color charge density with a number of (computational) particles.
- Parallel transport of charges
- NGP interpolation: Current J_{μ} on the grid generated by particle movement.
- J_{μ} as input for field equations of motion on the lattice.

$$D_{\mu}F^{\mu\nu}(t,z,x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t,z,x_T) = 0$$

Nearest-grid-point method (NGP)

- Color currents included, tied to the light-cone
- Sample color charge density with a number of (computational) particles.
- Parallel transport of charges
- NGP interpolation: Current J_{μ} on the grid generated by particle movement.
- J_{μ} as input for field equations of motion on the lattice.

$$D_{\mu}F^{\mu\nu}(t,z,x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t,z,x_T) = 0$$

Nearest-grid-point method (NGP)

- Color currents included, tied to the light-cone
- Sample color charge density with a number of (computational) particles.
- Parallel transport of charges
- NGP interpolation: Current J_{μ} on the grid generated by particle movement.
- J_{μ} as input for field equations of motion on the lattice.

$$D_{\mu}F^{\mu\nu}(t, z, x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_T) = 0$$

Nearest-grid-point method (NGP)

- Color currents included, tied to the light-cone
- Sample color charge density with a number of (computational) particles.
- Parallel transport of charges
- NGP interpolation: Current J_{μ} on the grid generated by particle movement.
- J_{μ} as input for field equations of motion on the lattice.

$$D_{\mu}F^{\mu\nu}(t, z, x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_T) = 0$$

Nearest-grid-point method (NGP)

- Color currents included, tied to the light-cone
- Sample color charge density with a number of (computational) particles.
- Parallel transport of charges
- NGP interpolation: Current J_{μ} on the grid generated by particle movement.
- J_{μ} as input for field equations of motion on the lattice.

$$D_{\mu}F^{\mu\nu}(t, z, x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_T) = 0$$

Nearest-grid-point method (NGP)

- Color currents included, tied to the light-cone
- Sample color charge density with a number of (computational) particles.
- Parallel transport of charges
- NGP interpolation: Current J_{μ} on the grid generated by particle movement.
- J_{μ} as input for field equations of motion on the lattice.

$$D_{\mu}F^{\mu\nu}(t, z, x_T) = J^{\nu}$$
$$D_{\mu}J^{\mu}(t, z, x_T) = 0$$

Initial conditions

- Temporal gauge ($A_0 = 0$) suitable for numerical time evolution.
- Asymptotically pure gauge "trails" behind nuclei.
- Fixed boundary conditions on the longitudinal boundaries are required.
- Random charge densities $\rho_{(1,2)}$ are sampled from McLerran-Venugopalan (MV) model.

[McLerran, Venugopalan: PRDD49 (1994) 3352-3355]

Initial conditions

£(_)

ρ

- Temporal gauge ($A_0 = 0$) suitable for numerical time evolution.
- Asymptotically pure gauge "trails" behind nuclei.
- Fixed boundary conditions on the longitudinal boundaries are required.
- Random charge densities $\rho_{(1,2)}$ are sampled from McLerran-Venugopalan (MV) model.

[McLerran, Venugopalan: PRDD49 (1994) 3352-3355]

$$\int \sigma^{f(2)} \int \rho^{a}(x_{T})\hat{\rho}^{b}(x'_{T}) = g^{2}\mu^{2}\delta^{(2)}(x_{T} - x'_{T})\delta^{ab}$$

$$\rho(t, z, x_{T}) = f(z - t)\hat{\rho}(x_{T})$$

$$\text{UV & IR regulation}$$

$$m \approx 2 \text{ GeV}$$

$$finite longitudinal thickness$$

$$Q_{s} \approx 2 \text{ GeV}$$

1. Initialize random charges and fields of two colliding nuclei.

Simulation overview

2. Simulation cycle:

- a. Move particles and apply parallel transport.
- b. Generate currents from particle movement.
- c. Evolve fields in time with currents as input.
- **d.** Compute observables ($T_{\mu\nu}$, ε , p_L , p_T , ...).
- 3. Average over many random events.

Numerical results

Au-Au collision in the MV model, SU(2)

Comparison to boost-invariant results

- Check validity of simulation results with finite nucleus thickness by comparing to analytical boost-invariant results.
- Compare boost-invariant Glasma initial conditions to simulated fields and vary thickness parameter σ .

Comparison to boost-invariant results

- Check validity of simulation results with finite nucleus thickness by comparing to analytical boost-invariant results.
- Compare boost-invariant Glasma initial conditions to simulated fields and vary thickness parameter σ .

Pressure anisotropy (1)

• Compute longitudinal and transverse pressure $p_L(z)$ and $p_T(z)$ as a function of the longitudinal coordinate z.

Pressure anisotropy (2)

- **Isotropization**: initial pressure anisotropy should vanish after ~ 0.1 fm/c to a few fm/c.
- Boost-invariance breaking perturbations drive system towards isotropization. [Epelbaum, Gelis, PRL 111 (2013) 232301]. Finite thickness breaks boost-invariance.

- Analyze pressure to energy density ratio in the central region at $\eta = 0$.
- Thick nuclei: pronounced pressure anisotropy (free-steaming).
- Slight movement towards isotropization visible, but it is too slow.
- Negative longitudinal pressures?

Pressure anisotropy (2)

- Isotropization: initial pressure anisotropy should vanish after ~ 0.1 fm/c to a few fm/c.
- Boost-invariance breaking perturbations drive system towards isotropization. [Epelbaum, Gelis, PRL 111 (2013) 232301]. Finite thickness breaks boost-invariance.

- Analyze pressure to energy density ratio in the central region at $\eta = 0$.
- Thin nuclei: negative longitudinal pressures
- Observables always influenced by presence of the nuclei at early times.

Longitudinal structure (1)

Initial conditions are still missing **random longitudinal structure**. Longitudinal randomness...

- leads to higher energy density in the Glasma.
 [Fukushima, PRD 77 (2008) 074005]
- could further break boost-invariance.

Possible consequence: faster isotropization times? -> future work!

Current implementation

"at rest"

Longitudinal randomness

Longitudinal structure (2)

First check: Light-like Wilson line expectation value $\langle tr(V) \rangle$ of a single nucleus is sensitive to longitudinal structure.

Conclusions and summary

- Simulating CGC collisions in 3D+1 with finite nucleus thickness in the laboratory frame using CPIC is viable.
- Boost-invariant results reproduced in the limit of thin nuclei.
- We observe a pronounced pressure anisotropy after the collision.
- Observed isotropization too slow.

Future:

- Study effects of initial conditions with random longitudinal structure on isotropization
- Corrections to initial Glasma energy density due to finite thickness

Open

arXiv:1605.07184 [hep-ph] Phys.Rev. D94 (2016) no.1, 014020 open source: https://github.com/openpixi

Thank you for your attention!

arXiv:1605.07184 [hep-ph] Phys.Rev. D94 (2016) no.1, 014020 open source: <u>https://github.com/openpixi</u>