Ultra-Relativistic Heavy Ion Collision Results

John Harris (Yale), September 17, 2016

Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb)
High p_T Hadrons Are Suppressed at LHC & RHIC

Central Pb-Pb and Au-Au Collisions

Suppression \rightarrow parton energy loss in hot QCD medium

Also enhancement at lower energies \rightarrow initial state effects (Cronin enhancement)

\[R_{AA} = \frac{N_{AA}^{\text{particle}}}{N_{\text{coll}} N_{PP}^{\text{particle}}} \]

\[R_{CP} = \frac{N_{\text{central}}}{N_{\text{peripheral}}} \sim R_{AA} \]

John Harris (Yale), September 17, 2016
Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Jets Are Quenched at RHIC & LHC

RHIC

Charge jets

- AuAu/Pythia
- tracking eff. uncertainty
- unfolding uncertainty
- T_{AA} uncertainty
- Uncertainties added linearly

$R_{AA}^{(Au+Au/Pythia)}$

- Run 11 $Au+Au \sqrt{s_{NN}}=200$ GeV, 60 μb$^{-1}$
- 0-10% Central Collisions
- Δk_T, $R = 0.2$
- $p_T^{\text{leading}} > 0.2$ GeV/c
- $p_T^{\text{const}} > 5.0$ GeV/c
- $A_{\text{reco, jet }}> 0.09$ sr

LHC

$R_{AA}^{(LHC)}$

ALICE Preliminary, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
- Δk_T, $R = 0.2$
- ALICE 0-10%
- ALICE 10-30%
- CMS 0-5%
- CMS 10-30%

CMS: Read from HIN-12-004-PAS
CMS: Syst. Unc. $R = 0.3$

RHIC Jets less suppressed than LHC Jets at low jet momentum

John Harris (Yale), September 17, 2016

Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Suppression of Quarkonium States expected in a hot QCD Medium!

John Harris (Yale), September 17, 2016

Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Elliptic Flow Saturates Hydrodynamic Limit

- Azimuthal asymmetry of charged particles:
 \[\frac{dn}{d\phi} \sim 1 + 2 v_2(p_T) \cos(2\phi) + \ldots \]
Elliptic Flow Saturates Hydrodynamic Limit

Azimuthal asymmetry of charged particles:
\[\frac{d\eta}{d\phi} \sim 1 + 2 v_2(p_T) \cos(2\phi) + \ldots \]

John Harris (Yale), September 17, 2016

Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Elliptic Flow Saturates Hydrodynamic Limit

Azimuthal asymmetry of charged particles:
\[\frac{dN}{d\phi} \sim 1 + 2v_2(p_T) \cos(2 \phi) + \ldots \]

Curves = hydrodynamic flow
zero viscosity, \(T_c = 165 \text{ MeV} \)

John Harris (Yale), September 17, 2016
Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Elliptic Flow Saturates Hydrodynamic Limit

Azimuthal asymmetry of charged particles:

\[\frac{dn}{d\phi} \sim 1 + 2 \, v_2(p_T) \cos(2\phi) + \ldots \]

- Mass dependence of \(v_2 \)
- Requires:
 - Early thermalization (0.6 fm/c)
 - Near-ideal hydrodynamics (near-zero viscosity) → “nearly perfect liquid”
 - \(\varepsilon \sim 25 \text{ GeV/fm}^3 \) (\(\gg \varepsilon_{\text{critical}} \))
 - Quark-Gluon Equ. of State
Flow Consequences → a Strongly-Coupled Medium with Ultra-low η/s (shear viscosity / entropy)

The strong-coupling limit of non-Abelian gauge theories with a gravity dual (ref: Kovtun, Son, Starinets, PRL 94, 111601 (2005))

Universal lower bound on shear viscosity / entropy ratio (η/s)

$\eta/s = 1 / 4\pi$ for a “perfect liquid”

John Harris (Yale), September 17, 2016
Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
II. Effects in $p(d) + A$ compared to $A + A$
High p_T Particles & Jets
High p_T Hadrons $R_{p(d)A}$ & R_{AA} at LHC and RHIC

- **LHC p-Pb & RHIC d-Au ($p_T > 2$ GeV/c)**
 - Binary scaling ($R_{dAu} \sim R_{pPb} \sim 1$), except “bump” at ~ 4 GeV/c
 - Absence of Nuclear Modification \rightarrow Initial state effects small

- **RHIC Au-Au and LHC Pb-Pb**
 - Suppression ($R_{pPb} \ll 1$, $R_{AuAu} \ll 1$) \rightarrow Final state effects (hot QCD matter)

John Harris (Yale), September 17, 2016
Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Jets in p-Pb & Pb-Pb at LHC

Binary scaling, no initial state effects!

ALICE ≈ ATLAS ≈ CMS: R_{p-Pb} (jet) ≈ 1

Jets quenched in Pb-Pb collisions

ALICE ≈ ATLAS ≈ CMS: R_{Pb-Pb} (jet)<<1

ALICE Preliminary

Pb-Pb $s_{NN} = 2.76$ TeV

anti-k_T $R = 0.2$

ALICE 0-10%

ALICE 10-30%

CMS 0-5%

CMS 10-30%

CMS: Read from HIN-12-004-PAS

CMS: Syst. Unc. $R = 0.3$
Jets in d-Au at RHIC

PHENIX arXiv:1509.04657v2

Jets reconstructed in p+p and d+Au
$12 < p_T < 50$ GeV/c

$R_{dAu} \approx 1$ for min.bias d+Au

R_{dAu} exhibits strong centrality dependence
Peripheral collisions: jets enhanced
Central collisions: jets suppressed
Centrality Dependence of Jets in p (d) + A

ATLAS, PLB 748 (2015) 392

R_{pPb} jets → strong centrality dependence

Peripheral collisions: jets enhanced
Central collisions: jets suppressed

R_{dAu} jets → strong centrality dependence

Peripheral collisions: jets enhanced
Central collisions: jets suppressed

Challenge to factorization in hard-scattering?

John Harris (Yale), September 17, 2016
Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Identified Particles
Hardening with multiplicity and particle mass indicative of collective effects in A-A-A!

Similar to effects observed in A-A → has been attributed to radial flow.
R_{pPb} for Identified Hadrons

R_{pPb} mass dependence
→ Protons peak at intermediate p_T
→ π and K flat over measured p_T range

Suppression in Pb-Pb

pp reference interpolated from 2.76 and 7.0 TeV

John Harris (Yale), September 17, 2016

Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Similar Effects at RHIC in d+Au

PHENIX

arXiv: 1304.3410
Indications of Collective Flow of Identified Particles in p-Pb

Strong mass ordering in pPb

Identified π, K, p
\[\pi, K, p - \text{Blast Wave} \quad pPb \ & \ PbPb \]

Blast wave model
(Schnedermann, PRC 48 (1993) 2462)

Hydro-inspired
- Particle source at \(T \)
- Radial flow \(\beta \)
 \[\beta (r) = \beta_s (r/R)^n \]
- Fit particle spectra simultaneously
 \(\langle \beta_T \rangle \) from \(2\beta_s / (2+n) \)
- \(T_{\text{kin}} \)
- \(n \)

Similar trends \(\rightarrow \) indicative of radial flow in p-Pb and Pb-Pb
- \(T_{\text{kin}} \) similar in Pb-Pb and p-Pb for same multiplicities
- \(\langle \beta_T \rangle \) larger in p-Pb for similar multiplicities
 \(\rightarrow \) stronger collective flow for smaller system size…?

John Harris (Yale), September 17, 2016
Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Heavy Flavor – D-Mesons: R_{pPb} & R_{PbPb}

D-meson NOT suppressed in p-Pb

R_{pPb} consistent with ≈ 1

Initial state effects small!

D-meson central R_{PbPb} suppressed!

Centrality dependence

Not initial state effect!

John Harris (Yale), September 17, 2016

Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Particle Correlations:
Flow Harmonics of Lighter Systems
Initial (Historical) STAR Discovery of the AA Ridge

John Harris (Yale), September 17, 2016
Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Long-range Di-hadron Correlations in pp, p-A

CMS, JHEP 09 (2010) 091

LHC near-side ridge for $\sqrt{s_{NN}} = 7$ TeV pp
5.02 TeV p-Pb

CMS, PLB 718 (2013) 795

ALICE, PLB 719 (2013) 29

Potential interpretations include CGC, long-range color correlations……., hydro??

John Harris (Yale), September 17, 2016

Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Observation of p-Pb Double Ridge

After subtraction (central – peripheral):
- Fourier decomposition
- Components shown as dotted/dashed curves

After subtraction of low multiplicity from high multiplicity events:
- Fourier decomposition seen as curves

John Harris (Yale), September 17, 2016
Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Comparing v_2 and v_3 from Long-range Correlations

Symbols are (back-to-back jet) subtracted data. Curves are before subtraction. Notice v_2 trends and v_3 almost identical (p-Pb and Pb-Pb)
Collective Flow $v_2(n)$ in Pb-Pb & p-Pb

For PbPb and pPb – Collective effects!

v_2 (n) remains large when using more (n) particles

$v_2 (4) = v_2 (6) = v_2 (8) = v_2 (LYZ)$ within 10%
Fourier Decomposition of p-Pb Double Ridge

After subtraction Fourier coefficient v_2 (2PC, sub)

Observe ordering in mass!

p-Pb ordering similar to Pb-Pb

v_2 (2PC, sub) mass hierarchy
~ described by
Hydro with Glauber initial conditions
ref: Bozek, Broniowski, Torrieri, arXiv:1307.5060

ALICE, arXiv:1307.3237

John Harris (Yale), September 17, 2016
Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
Collective Flow of Identified Particles in p-Pb!

CMS, arxiv:1409.3392

Identified K_S, Λ & charged hadrons

v_2 from 2-particle correlations

Exhibit mass ordering in pPb and PbPb

NCQ scaling better in pPb
Particle Correlations:
System Size from Freeze-out Radii
System Size in pp, p-Pb and Pb-Pb

Invariant radii vs $<N_{ch}>$
- pp similar to pPb
- pPb smaller than PbPb

Invariant Source Radii from HBT fits of 2 & 3 Pion Correlation Measurements:

$R_{inv}^{E_w}(p-Pb) \sim 1.05-1.15 R_{inv}^{E_w}(pp)$

$R_{inv}^{E_w}(Pb-Pb) \sim 1.35-1.55 R_{inv}^{E_w}(p-Pb)$

Perhaps only small hydrodynamic expansion in pPb beyond that in pp at same Nch
Evolution of p-Pb System

3d radii (R_{out}, R_{side}, R_{long}) in LCMS from two-pion correlations

Radii decrease with increasing k_T as in AA (and in hydro)

Similarity between pPb and high multiplicity pp

ALICE, PLB 739 (2014) 139

John Harris (Yale), September 17, 2016

Nuclear Matter under Extreme Conditions, Erice-Sicily, Italy
What are the Freezeout Radii Telling Us?

ALICE, Physics Letters B739 (2014) 139–151:

Invariant Source Radii from HBT 2 & 3 Pion Correlation Measurements

\[R_{\text{inv}}(p-Pb) \approx 1.05-1.15 \ R_{\text{inv}}(pp) \]

\[R_{\text{inv}}(Pb-Pb) \approx 1.35-1.55 \ R_{\text{inv}}(p-Pb) \]

- This disfavors models incorporating significantly larger flow in p-Pb than in pp at same multiplicity!
- Consistent with CGC initial conditions without a hydro-dynamical phase!
- See also (Shuryak interpretation)

 arxiv:1404.1888 – “collective implosion”

Demonstrates importance of initial conditions on the final-state – and/or – indicates significant collective expansion in peripheral Pb–Pb collisions.
What Have We Learned from p(d)A + A?

- p(d)+A studies confirm quenching/suppression in A+A is final state effect

- p(d)+A hard probes described by pQCD-inspired models
 Exceptions – High p_T hadrons (enhancement?)
 High p_T jets (peripheral enhanced? Central suppressed?)

- Many aspects of p(d)+A (at lower p_T) exhibit effects attributed to collective behavior – e.g. strong mass ordering, radial flow, $v_2(4) = v_2(6) = v_2(8)$

- Size of system much smaller in p(d)+A than in A+A
 p+A close to p+p at similar multiplicity – important to understand theoretically

- Need more theoretical guidance, direct model comparisons, more precise data!
A Final Comment

- We seek to investigate high density QCD phenomena in collisions of various (large and small) systems!
- Can we separate the initial state from the final state (even in theory) to compare p+p, p+A, A+A results and extract vital answers on:
 - The initial state: CGC, Glauber, pdf’s, etc?
 - The effect of cold nuclear matter on final state observables?
 - The basic parton energy loss mechanisms?
 - The dependence on multiplicity and energy in p+p, p+A & A+A?
 - The basic mechanisms of equilibration, transport and production?
- What are the key measurements to discriminate models or better yet theories?

We are investigating collective phenomena in a variety of nuclear systems to learn how the many-body system emerges from the fundamental interactions!
Thanks for your attention!