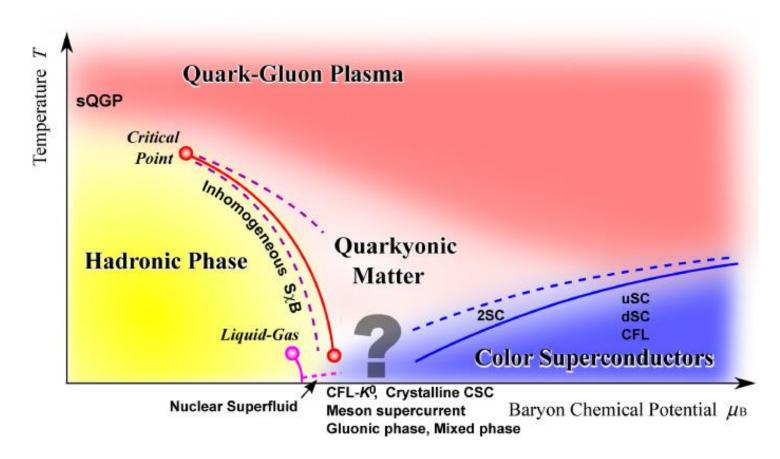
New dynamic critical phenomena in nuclear and quark superfluids

Noriyuki Sogabe (Keio University) In collaboration with Naoki Yamamoto

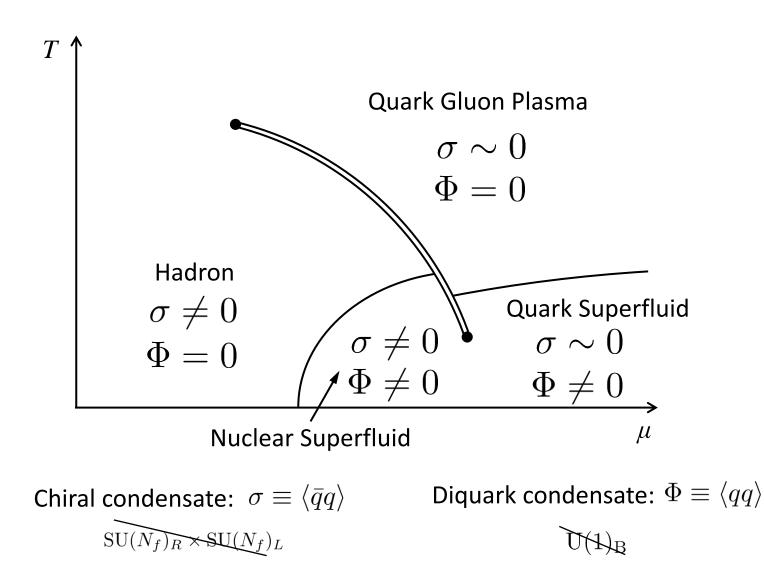
NS and N. Yamamoto, to appear

Phase diagram of QCD

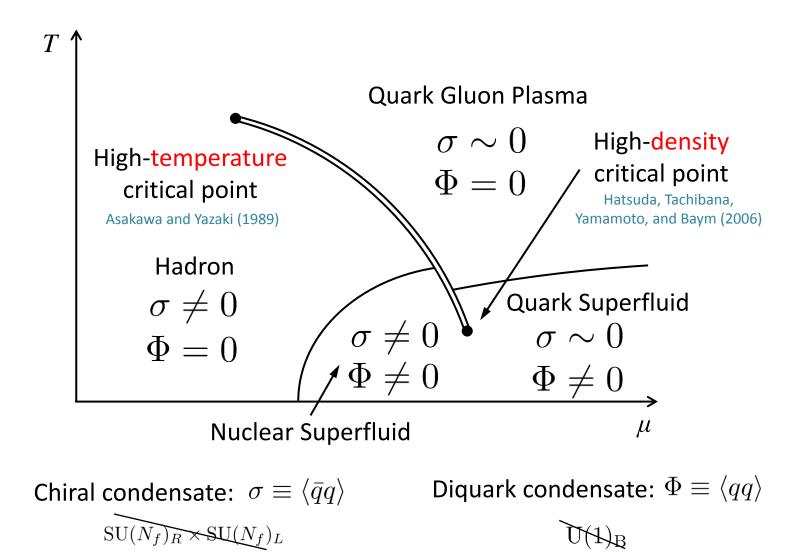


Fukushima, Hatsuda, Rept. Prog. Phys. (2010)

Phases of QCD



QCD critical points

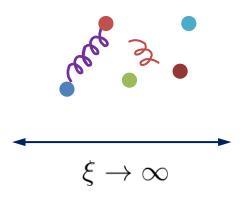


Classification of critical points

Universality class	High- T critical point	High- n_B critical point
Static	3D Ising	?
Dynamic Hohenberg and Halperin (1977)	Model H Fujii (2003), Son and Stephanov (2004)	?

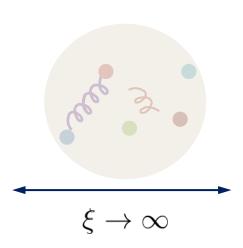
What are the universality classes of the high- n_B critical Point ?

Universality class



 $\langle \sigma(\boldsymbol{r})\sigma(0)\rangle \sim e^{-r/\xi}$

Universality class



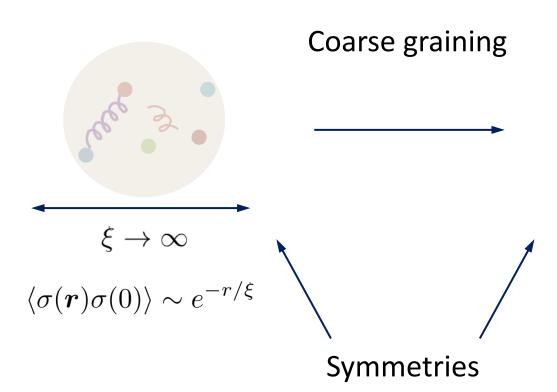
 $\langle \sigma(\boldsymbol{r})\sigma(0)\rangle \sim e^{-r/\xi}$

Coarse graining

Hydrodynamic variables:

- Order parameters
- Conserved quantities
- Nambu-Goldstone modes

Universality class



Hydrodynamic variables:

- Order parameters
- Conserved quantities
- Nambu-Goldstone modes

Classification based on hydrodynamic variables and symmetries

Results

Universality class	High- T critical point	High- n_B critical point
Static	3D Ising	3D Ising
Dynamic Hohenberg and Halperin (1977)	Model H Fujii (2003), Son and Stephanov (2004)	New class

New dynamic universality class

beyond the conventional Hohenberg-Halperin's classification

Outline

High-density critical point

Hydrodynamic variables
 Symmetries

2 Statics

1

3

• Ginzburg-Landau theory

Dynamics

Langevin equation

High-density critical point

- Hydrodynamic variables Diquark condensate σ n $\theta: \Phi \sim e^{i\theta}$ Chiral condensate Baryon number density Superfluid phonon $\left(\begin{array}{cc} T^{00} & T^{0i} \\ Energy \ density & Momentum \ density \end{array} \right)$
- Symmetries

 $\mathrm{SU}(N_f)_R \times \mathrm{SU}(N_f)_L \times \mathrm{U}(1)_B \qquad C P T$

Statics

$$\begin{split} F[\sigma, n, \theta] &= \int d\boldsymbol{r} \left[\frac{a}{2} (\boldsymbol{\nabla} \sigma)^2 + b \boldsymbol{\nabla} \sigma \cdot \boldsymbol{\nabla} n + \frac{c}{2} (\boldsymbol{\nabla} n)^2 + \frac{d}{2} (\boldsymbol{\nabla} \theta)^2 + V(\sigma, n) \right] \\ V(\sigma, n) &= \frac{A}{2} \sigma^2 + B \sigma n + \frac{C}{2} n^2 \end{split}$$

- Expansion dictated by the symmetries
- θ is irrelevant to the statics.

$$F[\sigma, n, \theta] = F_{\rm MF}[\sigma, n] + F_{\rm MF}[\theta] + \#\sigma^2 (\nabla \theta)^2 + \cdots$$

decoupled due to *T* symmetry
derivative coupling
due to U(1) symmetry

Statics

$$F[\sigma, n, \theta] = \int d\mathbf{r} \left[\frac{a}{2} (\nabla \sigma)^2 + b \nabla \sigma \cdot \nabla n + \frac{c}{2} (\nabla n)^2 + \frac{d}{2} (\nabla \theta)^2 + V(\sigma, n) \right]$$
$$V(\sigma, n) = \frac{A}{2} \sigma^2 + B \sigma n + \frac{C}{2} n^2$$

• Expansion dictated by the symmetries

$$\langle \sigma(\mathbf{r})\sigma(0)\rangle = \frac{1}{4\pi r}e^{-r/\xi} \qquad \qquad \xi \sim \frac{1}{\sqrt{AC - B^2}} \to \infty$$

$$\chi_B \equiv \frac{\partial n}{\partial \mu} = T \left\langle n^2 \right\rangle_{\boldsymbol{q} \to 0} \sim \xi^{2-\eta} \qquad (\eta = 0.04)$$

Same universality class of high-T critical point

Dynamics

• Langevin equation for $x_i \equiv \sigma, n, \theta$

$$\begin{split} \dot{x}_i(\boldsymbol{r},t) &= -\gamma_{ij} \frac{\delta F}{\delta x_j} - \int d\boldsymbol{r}' \left[x_i(\boldsymbol{r}), x_j(\boldsymbol{r}') \right] \frac{\delta F}{\delta x_j(\boldsymbol{r}')} + \text{noise term} \\ \\ \text{dissipative} \qquad \text{non-dissipative} \end{split}$$

 $\gamma_{ij} = \gamma_{ji}$ Onsager's principle $[\theta(\mathbf{r}), n(\mathbf{r'})] = \delta(\mathbf{r} - \mathbf{r'})$

$$\gamma_{ij}(\boldsymbol{q}) = \gamma_{ij}^{(0)} + \gamma_{ij}^{(1)} \boldsymbol{q}^2 + O(\boldsymbol{q}^4)$$

Dynamics

• Langevin equation for $x_i \equiv \sigma, n, \theta$

$$\begin{split} \dot{x}_{i}(\boldsymbol{r},t) &= -\gamma_{ij}\frac{\delta F}{\delta x_{j}} - \int d\boldsymbol{r}' \left[x_{i}(\boldsymbol{r}), x_{j}(\boldsymbol{r}')\right] \frac{\delta F}{\delta x_{j}(\boldsymbol{r}')} + \text{noise term} \\ \mathbf{dissipative} & \text{non-dissipative} \\ \dot{\sigma}(\boldsymbol{r}) &= -\Gamma_{\sigma\sigma}\frac{\delta F}{\delta\sigma(\boldsymbol{r})} + \Gamma_{\sigma n}\boldsymbol{\nabla}^{2}\frac{\delta F}{\delta n(\boldsymbol{r})} \\ \dot{n}(\boldsymbol{r}) &= \Gamma_{\sigma n}\boldsymbol{\nabla}^{2}\frac{\delta F}{\delta\sigma(\boldsymbol{r})} + \Gamma_{nn}\boldsymbol{\nabla}^{2}\frac{\delta F}{\delta n(\boldsymbol{r})} - \int d\boldsymbol{r}'[n(\boldsymbol{r}), \theta(\boldsymbol{r}')]\frac{\delta F}{\delta\theta(\boldsymbol{r}')} \\ \dot{\theta}(\boldsymbol{r}) &= -\Gamma_{\theta\theta}\frac{\delta F}{\delta\theta(\boldsymbol{r})} - \int d\boldsymbol{r}'[\theta(\boldsymbol{r}), n(\boldsymbol{r}')]\frac{\delta F}{\delta n(\boldsymbol{r}')} \end{split}$$

Dynamics

• Langevin equation for $x_i \equiv \sigma, n, \theta$

$$\dot{x_i}(\mathbf{r}, t) = -\gamma_{ij} \frac{\delta F}{\delta x_j} - \int d\mathbf{r}' \left[x_i(\mathbf{r}), x_j(\mathbf{r}') \right] \frac{\delta F}{\delta x_j(\mathbf{r}')} + \text{noise term}$$

dissipative non-dissipative

• Leading order of q :

$$\begin{pmatrix} i\omega - \Gamma_{\sigma\sigma}A - (\Gamma_{\sigma\sigma}a + \Gamma_{\sigma n}B)\mathbf{q}^2 & -\Gamma_{\sigma\sigma}B - (\Gamma_{\sigma\sigma}b + \Gamma_{\sigma n}C)\mathbf{q}^2 & 0\\ -(\Gamma_{\sigma n}A + \Gamma_{nn}B)\mathbf{q}^2 & i\omega - (\Gamma_{\sigma n}B + \Gamma_{nn}C)\mathbf{q}^2 & d\mathbf{q}^2\\ -B - b\mathbf{q}^2 & -C - c\mathbf{q}^2 & i\omega - \Gamma_{\theta\theta}d\mathbf{q}^2 \end{pmatrix} \begin{pmatrix} \sigma\\ n\\ \theta \end{pmatrix} = 0$$

• Hydrodynamic modes: $\omega = -i\Gamma_{\sigma\sigma}$ $\omega^2 = c_s^2 oldsymbol{q}^2$

Dynamic critical phenomena

• Speed of phonon

$$c_s = \sqrt{rac{d}{\chi_B}}
ightarrow 0$$
 "Critical slowing down"

• Dynamic critical exponent $\omega = c_s |oldsymbol{q}| \sim \xi^{-z}$

$$z = 2 - \frac{\eta}{2}$$

New dynamic universality class beyond Hohenberg-Halperin's classification

Why the universality class is new?

Compare with the other critical points:

- High-*T* critical point Due to superfluid phonon associated with U(1) symmetry
- Superfluid transition of ⁴He
 Because characteristic order parameters are different.

Superfluid gapv.s.Chiral condensateof superfluid helium 4of high- n_B critical point

Future heavy-ion collisions

- Dynamic critical phenomena distinguish the high-T and high- n_B critical points.
- Observation of high- n_B critical point would provide the indirect evidence of the superfluidity in QCD.

Conclusion

• We found the new dynamic universality class beyond the conventional Hohenberg-Halperin's classification.

Universality class	High- T critical point	High- n_B critical point
Static	3D Ising	3D Ising
Dynamic Hohenberg and Halperin (1977)	Model H Fujii (2003), Son and Stephanov (2004)	New class

Back up slides

Canonical conjugate

D. T. Son, hep-ph/0204199

• Microscopic theory

S. Weinberg, *The quantum theory of elds. Vol. 2*

$$\mathcal{L} = \mathcal{L}_0 - \mu \bar{q} \gamma^0 q$$

= $\mathcal{L}_0 - A_\mu(x) \bar{q} \gamma^\mu q$ $A^\mu \equiv (\mu, \mathbf{0})$

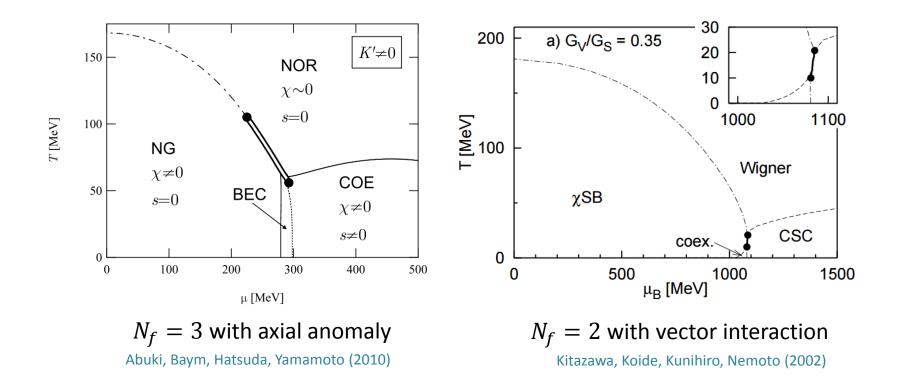
• Gauge transformation

$$A_{\mu} \to A_{\mu} - \partial_{\mu} \alpha \qquad \theta \to \theta + \alpha$$

• Effective theory

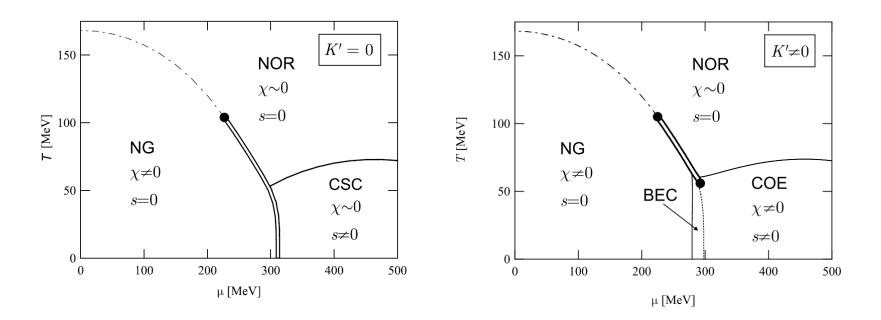
$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{eff}}(\dot{ heta} + \mu, \boldsymbol{\nabla} \theta)$$
 $n \equiv \frac{\delta \mathcal{L}}{\delta \mu} = \frac{\delta \mathcal{L}}{\delta \dot{ heta}}$

High-density critical point in NJL model



No-superfludity in 2SC phase

High-density critical point in NJL model



$$\mathcal{L} = \overline{q} (i\gamma_{\mu}\partial^{\mu} - m_{q} + \mu\gamma_{0})q + \mathcal{L}^{(4)} + \mathcal{L}^{(6)}$$
$$\mathcal{L}^{(6)} \ni K' \left(\operatorname{Tr}[(d_{\mathrm{R}}^{\dagger}d_{\mathrm{L}})\phi] \right) \qquad \qquad (d_{R})_{ai} \equiv \epsilon_{abc}\epsilon_{ijk}(q_{R})_{b}^{j}C(q_{R})_{c}^{k}$$
$$\phi_{ij} \equiv (\overline{q}_{R})_{a}^{j}(q_{L})_{a}^{i}$$

With energy and momentum

• Speed of phonon

$$c_s^2 = \frac{V_{\pi\pi} V_{\theta\theta} T^3 s_{\rm eq}^2}{\kappa_{nn} \chi_{nn} + 2\kappa_{n\varepsilon} \chi_{n\varepsilon} + \kappa_{\varepsilon\varepsilon} \chi_{\varepsilon\varepsilon}}$$

 $V_{\pi\pi}, \ V_{\theta\theta}$: Curvatures in the free energy

 $\kappa_{nn}, \ \kappa_{n\varepsilon}, \ \kappa_{\varepsilon\varepsilon}$: Thermodynamic quantities (no singularity) $\chi_{nn} \sim \chi_{n\varepsilon} \sim \chi_{\varepsilon\varepsilon} \sim \xi^{2-\eta}$: Susceptibilities

Superfluid transition of ⁴He

• Speed of phonon

$$c_s = \sqrt{\frac{\rho_s}{c_{\rm p}}}$$

Hohenberg and Halperin (1977)

$$ho_s \sim \xi^{-1}$$
 : Stiffness constant

 $c_{\rm p} \sim \xi^{\frac{\alpha}{\nu}}~$: Specific heat at constant pressure

• Critical exponent

$$z = \frac{3}{2} - \frac{\alpha}{2\nu}$$