pillow, pillow, pillow, pillow, pillow, pillo pillow, pillow, pillow, pillow, pillow, pillow, pillo

Extreme Matter in Strong External Electromagnetic Fields

Kenji Fukushima

The University of Tokyo Department of Physics

- Nuclear Physics School in Erice -

1

I am talking about...

Homogeneous *B* effects on the chemical freezeout

- □ Finite-*T* Inverse Magnetic Catalysis
- \square Hadron Resonance Gas \rightarrow Electric Fluctuations

KF-Hidaka, PRL117, 102301 (2016)

Interplay between *B* and rotation

 \Box Finite- μ Inverse Magnetic Catalysis

Quantum Anomaly
 Chen-KF-Huang-Mameda, PRD93, 104052 (2016)
 Ebihara-KF-Mameda, 1608.00336 [hep-ph]

E and inhomogeneous **B** in "worldline formalism"

- Dynamically Assisted Schwinger Mechanism
- □ Spatially Assisted Schwinger Mechanism (Magnetic Catalysis)

Copinger-KF, PRL117, 081603 (2016)

B-effects 10 yrs ago (before HIC) Quark matter (with color-super) in *neutron stars*

KF-Warringa, PRL100, 032007 (2008)

Marginal to affect QCD physics...

B-effects in Heavy-Ion Collisions

ŔŴŗĸĿĸŔŴŗĸĿĸŔŴŗĸĿĸŔŴŗĸĿĸŔŴŗĸĿĸŔŴŗŔĿŔŴŗĸĿĸŔŴŗĸĿĸŔŴŗĸĿĸŔŴŗĸĿĸŔŴŗĸĿĸŔŴŗĸĿĸŔŴŗ

Instantaneous, but strongest in the *present* Universe! **GeV-scale (~10²⁰ gauss) is a realistic estimate!** Review: X.-G. Huang, 1509.04073 [nucl-th] **B-effects must definitely affect QCD physics**

Effects of eB>(Λ_{QCD})² on QCD? මෙම කිරීම මේ කිරීම මේ කිරීම මේ කිරීම කිරීම කිරීම මේ කිරීම මේ කිරීම මේ කිරීම මේ කිරීම මේ කිරීම මේ කිරීම **Magnetic Catalysis** Klimenko, Shovkovy, Miransky, Gusynin, Shushpanov, Smilga, ... **B** favors more chiral symmetry breaking **Inverse** Magnetic Catalysis Preis, Rebhan, Schmitt, etc... **B** disfavors chiral sym breaking at high $\mu_{\rm B}$ **Inverse** Magnetic Catalysis (Magnetic Inhibition) Bali, Endrodi, Bruckmann, Schafer, Fodor, Szabo, etc... **B** disfavors chiral sym breaking at high T

Effects of eB>(A_{QCD})² on QCD? Magnetic Catalysis

Klimenko, Shovkovy, Miransky, Gusynin, Shushpanov, Smilga, ...

B favors more chiral symmetry breaking

Scalar condensate : *J*=0 with *S*=1 and *L*=1 NJL / Chiral Perturbation Theory / Lattice

Effects of eB>(A_{QCD})² on QCD? Magnetic Catalysis

Physics understandable in the mean-field level

B favors more chiral symmetry breaking

Inverse Magnetic Catalysis

Physics understandable in the mean-field level

B disfavors chiral sym breaking at high μ_B

Inverse Magnetic Catalysis (Magnetic Inhibition)

Physics *beyond* the mean-field level

Case not closed

B disfavors chiral sym breaking at high **T**

Finite-T Inverse Magnetic Catalysis , ನಟ್ಟೆಎಫ್, ನಟ್ಟೆಎಫ್, ನಟ್ಟಿಎಫ್, ನಟ್ಲಿಎ ನಟ್ಲಿಎಫ್, ನಟ್ಲಿಎಫ್, ನಟ್ಲಿಎಫ್, ನಟ್ಲಿಎಫ್, ನಟ್ಲಿಎಫ್, ನಟ್ಲಿಎ **Difficulty in understanding the IMC** Critical T in BCS: $T_c \propto \Delta(T=0)$ $\langle \bar{q}q \rangle$ in QCD **Reconcile?** $\langle \bar{q}q \rangle (T=0)$ is increased at finite *B* T_c is decreased at finite *B* $\langle \bar{q}q \rangle$ **Needs some other dynamics?** (deconfinement / IR meson)

Effects of eB>(Λ_{QCD})² on QCD? Phase Diagram Klimenko, Shovkovy, Miransky, Gusynin, Shushpanov, Smilga, ... Preis, Rebhan, Schmitt, etc...

Bali, Endrodi, Bruckmann, Schafer, Fodor, Szabo, etc...

Fraga, Noronha, Palhares, Blaizot, Ruggieri, Gatto, etc...

Infinite *B* limit?

Fermions infinitely heavy (quenched limit) Reduced to anisotropic pure Yang-Mills 1st-order Phase Transition!

Endrodi, Cohen-Yamamoto

Homogeneous *B* effects on the chemical freezeout

Empirical Freezeout Conditions

HERAL HERAL HERAL HERAL HERAL HERAL HER HERAL HERAL HERAL HERAL HERAL HERAL HERAL HERAL

Empirical Freezeout Conditions

ĦĨŢŎĸĨĿŢŔĨŢŎĸĨĿŢŔĨŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĔĬŎŢĔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎĸĨĿŢŔĬŢŎ

13

Landau Quantization

ŶĨŶŖŴĸŶĬĨŶŖŴĸŶĬĨŶŖŴĸŶĬĨŶŖŴĸŶĬĨŶŖŶĬĬŶŖŶĬĬŶŖŴĸŶĬĬŶŖŴĸŶĬĬŶŖŴĸŶĬĬŶŖŴĸŶĬĬŶŖŴĸŶĬĬŶŖ

$$\epsilon^2 = p_z^2 + 2|eB|(n+1/2) + m^2 - 2s \, eB$$

Dominated by *n*=0 (Lowest Landau Level)

$$m_{\rm eff}^2 = m^2 + |eB| - 2s \, eB$$

Effective masses of large spin resonances pushed down significantly — more hadrons

Phase space (Landau degeneracy) enhanced proportional to *eB* — even more hadrons

Things are not so simple

It is not obvious whether the chemical freezeout curves are shifted down in accord to the inverse MC.

With increasing B:

Which is earlier???

E increases *N* increases

$$E/N \sim 1 {
m GeV}$$

realized earlier or later?

Shifted Freezeout Curves

NO Puzzle of Inverse Magnetic Catalysis!!!

Shifted Freezeout Curves

Charge Conservations

Charge Conservations

ĦĔŗĸĿŧĬĔŗĸĿŧĬĔŗĸĿŧĬĔŗĸĿŧĬĔŗĸĿŧĬĔŗĦĔŗĸĿŔĬĔŗĸĿŔĬĔŗĸĿŔĬĔŗĸĿŔĬĔŗĸĿŔĬĔŗĸĿŔĬĔŗĸĿŔĬĔŗ

At high T

$$\mu_S \sim \mu_B/3$$

The chemical potential felt by free strange quarks is

$$\mu_B/3 - \mu_S \sim 0$$
 if $\mu_S \sim \mu_B/3$

This signals for realization of "**quark deconfinement**" even in HRG without quark d.o.f.

Charge Conservations μ_Q is fixed to meet B/(2Q) = 1.2683In (heavy) nuclei there are **a bit** more neutrons than protons. Isospin sym. breaking is minor $\rightarrow \mu_Q$ is nonzero but small.

Observables on Freezeout Lines

かぜなかぶし かぜなかぶし かぜなかぶし かぜなかぶし かぜなかぶし かぜなかぶし かぜなかぶし かぜなかぶし かぜなかぶし かぜなか

Electric Charge Fluctuations

Sensitivity to B

Chemical potential fixed at 0.6GeV

Temperature fixed by the condition $E/N=0.9\sim1GeV$

Conjecture

ಎಫ್. ಸಚಿಎಫ್. ಸಚಿಎಫ್. ಸಚಿಎ ಸಚಿಎಫ್. ಸಚಿಎಫ್. ಸಚಿಎಫ್. ಸಚಿಎಫ್. ಸಚಿ

Enhanced fluctuations imply enhanced electric conductivity

High Density: proton + neutron Strong *B*: proton (lightened)

Dense and magnetized nuclear matter dominated by protons

Easy to sustain the decaying B (Lenz's law)

cf. B changes transport coefficients: see KF-Hattori-Yee-Yin, PRD93, 074028 (2016) for heavy-quark diffusion coefficients

Possible signatures for B

ŔĨŢŖŴĿŔĬĨŢŔĿŔĬĬŢŔĿŔĬĬŢŔŔĿŔĬĬŢŔŔĿŔĬĬŢŖŔĬĬŢŔŔŢŔĬŢŖŴĿŔĬĬŢŔŔĿŔĬĬŢŔĿŔĬĬŢŔĿŔĬĬŢŔĿĔĬĬŢŔ

Centrality differentiated thermal parameter analysis

Magnetic shift of the chemical freezeout points with different centralities.

Freezeout *T* decreases in accord to the IMC.

Enhancement of μ_Q with different centralities. Easily accessible information from HIC experiment.

Enhancement of χ_Q with different centralities. A bit challenging but possible experimental signature.

Interplay between *B* and Rotation

Large J in Heavy-Ion Collisions

ĸŔŊŗĸĿŗŔŔŢŗĸĿŗŔŔŢŗĸĿŗŔŔŢŗĸĿŗŔŔŢŗĸĿŗŔŔŢŗŔĔŢŗĸĿŗŔŔŢŗĸĿŗŔŔŢŗĸĿŗŔŔŢŗĸĿŗŔŔŢŗĸĿŗŔŔŢŗ

cf. polarization of Λ and $\overline{\Lambda}$

Fruitful physics coming!

Becattini-Inghirami-Rolando-Beraudo (2015)

Jiang-Lin-Liao (2016)

Large J and long life time (unlike B)!

Rotation $\sim B$

 $B \sim \mu$ SZ **Chiral Magnetic Effect** ~ **Chiral Vortical Effect Gauge Effect Geometrical Effect Can be homogeneous** Must be inhomogeneous No upper limit **Causality limit General Relativity Gauge Theory Fluid Dynamics**

 $\mu \Omega$ in Neutron Star $\mu \sim 500 \text{ MeV} \times \Omega \sim 10^3 \text{ s}^{-1}$ (millisecond pulsar) $\mu \Omega \sim 10^{-15} \text{ MeV}^2$ (extremely tiny!!!)

Rotation ~ Chemical Potential

Rotating fermions are given finite momenta, and the Dirac sea is "pushed up" just like chemical potentials.

Most well-known example: Deformed Nuclei

Cranking model
$$H_{\rm rot} = H - \Omega J_z$$

Looks like a chemical potential for matter

$$\mu \sim \Omega J_z \sim M (\Omega R)^2$$
 (extremely huge!!!)

Phase transition solely by J ?

ĦĨŢĿĸĿĿĦĨŢĿĸĿĿĦĨŢĿĸĿĿĦĨŢĿĸĿĿĦĨŢĿĸĿĿĦĨŢĿĦĨŢĿĸĿĿĦĨŢĿĸĿĿĦĨŢĿĸĿĿĦĨŢĿĸĿĿĦĬŢĿĸĿĿĦĬŢĿ

Jiang-Liao, 1606.03808

Complete analogy to chemical potential... BUT!

Phase transition solely by J ? **Effective density (Pauli blocked):** ΩJ_{γ} Finite size effect (IR cutoff): J_z/R Causality: $\Omega < 1/R$ No mode can be Pauli blocked \rightarrow No phase transition solely by J Situations changed by $T / \mu / B$

Coupling to Magnetic Field

If *B* is imposed along the rotation axis, the wave-function should be *localized in the Larmor radius*

. ಶೇಕೆಂಪ್ , ಶೇಕೆಂಪ್ , ಶೇಕೆಂಪ್ , ಶೇಕೆಂ ಸೇಕೆಂಪ್ , ಶೇಕೆಂಪ್ , ಶೇಕೆಂಪ್ , ಶೇಕೆಂಪ್ , ಶೇಕೆಂಪ್ , ಶೇಕೆಂ

We can forget about the boundary effect for

$$\sqrt{eB} \gg R^{-1}$$

Roughly speaking, the Landau quantization (pushing many states into LLL) works stronger than the quantization from the boundary effect.

Chiral Restoration by Ω

Chen-KF-Huang-Mameda (2015)

Emergent Finite Density

HEAR, HEA

Straightforward computation of the density:

$$\frac{\Omega}{\pi^2 R^2} \sum_{\ell=0}^{N} (\ell + 1/2) = \frac{eB\Omega}{4\pi^2} (N+1)$$

 $N = eBR^2/2$ fixed to match the Landau degeneracy factor

Anomaly

ĦĔŗĸĿŧĬĔŗĸĿŧĬĔŗĸĿŧĬĔŗĸĿŧĬĔŗĸĿĔĬĔŗŔĿĔĬĔŗĸĿĔĬĔŗĸĿĔĬĔŗĸĿĔĬĔŗĸĿĔĬĔŗĸĿĔĬĔŗĸĿĔĬĔŗ

Hattori-Yin, 1607.01513

$$\Delta j_V^0 = q_f \frac{C_A}{2} (\boldsymbol{B} \cdot \boldsymbol{\Omega})$$
$$C_A = 1/2\pi^2$$

$$\frac{\Omega}{\pi^2 R^2} \sum_{\ell=0}^{N} (\ell + 1/2) = \frac{eB\Omega}{4\pi^2} (N + 1)$$

Theoretical controversies...

$$n_{\rm anom} \sim \frac{(eB)^2 (\Omega R) R}{8\pi^2}$$
 QCD Scale in HIC!
KF-Mameda (soon)

Chemical freezeout could be shifted to higher density

Chiral Vortical Effect

Landsteiner-Megias-Pena-Benitez (2011)

$$\nabla_{\mu} j^{\mu}_{A} = C_{F} \epsilon^{\mu\nu\rho\lambda} F_{\mu\nu} F_{\rho\lambda} + C_{R} \epsilon^{\mu\nu\rho\lambda} R_{\mu\nu}{}^{\alpha\beta} R_{\rho\lambda\alpha\beta}$$

Density and Current from Gauge and Gravitational Anomalies

HIC (a) a few GeV (finite-T,
$$\mu$$
, B, Ω)

Experiment to investigate physics of Kerr metric in the Universe

A lot of theoretical works are ongoing now!

E and inhomogeneous B in the "worldline formalism"

Vital Question in HIC

ŶĨŶŗŴĸŶĬŶŗŴĸŶĬŶŗŴĸŶĬŶŗŴĸŶĬŶŗŴĸŶĬŶŗŶĬŶŗŴĸŶĬŶŗŴĸŶĬŶŗŴĸŶĬŶŗŴĸŶĬŶŗŴĸŶĬŶŗŴĸŶĬŶŗ

Initial condition of HIC = Glasma (Coherent chromo-*E* and chromo-*B* fields)

see KF, 1603.02340 [nucl-th]

Quark production from classical fields (not slow!)

Time-dep. *E* and Space-dep. *B* (known) Space-dep. *E* and Time-dep. *B* (difficult)

Particle Production from E Schwinger Mechanism (vacuum) Landau-Zener Effect (material)

Insulation breakdown caused by E

Suppressed by "activation energy"

$$\sim e^{-\pi m^2/(eE)}$$

quark mass (hep) residual mass (cond-mat)

Particle Production from E and B Euler-Heisenberg (well-known) Answer

CGC Calculation

Quark production from CGC *not yet* fully quantified Quark mass dependence *not yet* systematically studied

Only available indication so far:

Quark production is very fast (comparable to *B*'s lifetime)

In principle all these (anomaly) effects should be included...

Worldline Formalism

Proper-time representation of determinant

$$\Gamma = -\frac{1}{2} \int_0^\infty \frac{dT}{T} e^{-m^2 T} \int_{\text{periodic}}^{\mathcal{D}x} e^{-\int_0^T d\tau (\frac{\dot{x}^2}{4} + ieA \cdot \dot{x})} \Phi$$
$$\Phi = \text{tr} \mathcal{P} e^{\frac{ie}{2} \int_0^T d\tau \, \sigma_{\mu\nu} F_{\mu\nu}}$$

QFT = QM in 4+1 dims

Stationary point approx. (WKB) 4+1 dims "classical" eom (Worldline Instantons)

$$\frac{m\ddot{x}_{\mu}}{\sqrt{\int_0^1 du \, \dot{x}^2}} = ieF_{\mu\nu}\dot{x}_{\nu}$$

Decomposition

$$\Gamma = -2 \int_0^\infty \frac{dT}{T} e^{-m^2 T} \gamma_E(T; A_3, A_4) \cdot \gamma_B(T; A_1, A_2)$$

$$\gamma_E = \int \mathcal{D}x_3 \,\mathcal{D}x_4 \,\cos\left(\int_0^T d\tau \,eE\right) e^{-\int_0^\tau \left[\frac{1}{4}(\dot{x}_3^2 + \dot{x}_4^2) + ieA_3\dot{x}_3 + ieA_4\dot{x}_4\right]}$$

$$\gamma_B = \int \mathcal{D}x_1 \, \mathcal{D}x_2 \, \cosh\left(\int_0^T d\tau \, eB\right) e^{-\int_0^\tau \left[\frac{1}{4}(\dot{x}_1^2 + \dot{x}_2^2) + ieA_1\dot{x}_1 + ieA_2\dot{x}_2\right]}$$

This decomposition is possible as long as A_1 and A_2 not depending on x_3 and x_4 A_3 and A_4 not depending on x_1 and x_2

This can hold for time-dep. E and space-dep. B !

(4+1)-*dim QM for E*

ĦĨŢŎĿĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĔĬŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎ

$$E(t) = \frac{E}{\cosh^2(\Omega t)} e_z + \frac{\varepsilon}{\cosh^2(\omega t)} e_z$$
Potential energy reads: $\propto \left[\frac{E \tan(\Omega x_4)}{\Omega} + \frac{\varepsilon \tan(\omega x_4)}{\omega}\right]^2$
No Effect

Ai

(4+1)-*dim QM for E*

Solvable example:

$$\boldsymbol{B}(x) = B \operatorname{sech}^2(\kappa x_1) \boldsymbol{e}_3$$

In more general:

$$\boldsymbol{B}(x) \simeq \left[B - B\kappa^2 (x_1^2 + x_2^2) \right] \boldsymbol{e}_3$$

Enhanced Particle Production

HEAR, HEAR,

Space-dep. B

Time-dep. E

Spatially Assisted Magnetic Catalysis $\kappa^2 > m^2 \ (\tilde{m}^2 < 0)$

> *T*-integration does not converge... Dynamical mass should be generated Chiral symmetry MUST be broken

Summary

Strong *B* in Heavy-Ion Collisions □ Life-time depends on electric conductivity □ May survive better at high density ? □ Observables at freezeout affected (~magnetometer) **Strong** *B* and Rotation in Heavy-Ion Collisions □ Rotation NOT decay inducing anomalous effects **Strong** *B* and **Rotation** in Neutron Stars □ Chiral condensate and thus EoS affected MUCH! Strong (chromo) *B* and Inhomogeneity in CGC in Heavy-Ion Collisions □ Quark production in CGC (not slow but fast process)