Probing of dielectron decays of baryon resonances with HADES

INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 37th Course Probing Hadron Structure with Lepton and Hadron Beams 16-24 September 2015, Erice

Witold Przygoda (HADES Collaboration)

Jagiellonian University in Kraków, Poland

A bit of history... 20 years ago

Why dileptons?

Guy Roche (probe hadron strucure)

Dileptons from hadronic reactions

Bengt Friman and Madeleine Soyeur (Vector Dominance Model: working horse dilepton-hadron coupling)

Branstate into the <u>Vector Dominance</u> <u>Model of Johoton - hadron couplings</u> H <u>Jaco</u> for $\delta(q)$ · Space-like $q^{2} \times o$ H H <u>Jac</u> J. J. J. Space-like $q^{2} \times o$ Ly eter

Physics with Pion Beams at GSI Volker Metag

dileptons: probes of vector meson in medium

3

G.E. Brown, M. Rho Phys. Rev. Lett. **66** (1991) 2720 scaling of masses with χ-condensate order parameter of χS restoration

$$m^* \approx m \left[\left\langle \overline{q} q^* \right\rangle / \left\langle \overline{q} q \right\rangle \right]^*$$

T. Hatsuda, S.H. Lee Phys. Rev. C **46** (1992) 34

QCD sum rules $\boldsymbol{m}^* = \boldsymbol{m} (1 - \alpha \rho^* / \rho)$

early motivations

« short-lived mesons in medium »

$$p/\pi/\gamma/A + A$$

$$m_{e+e-} = \sqrt{p_{e+}p_{e-}} \sin \frac{\vartheta_{e+e-}}{2}$$

$$\frac{best \ candidate}{\rho(770) \ 1^{--} \ c\tau} = 1.3 \ fm/c}{\Gamma = 150 \ MeV}$$

• rare probes ($e^+e^-BR \sim 10^{-5}$)

but

 do not interact strongly with nuclear matter

ρ in-medium: hadronic models

baryons are the main players

« vacuum »

$$\Sigma_{\rho}(M) = -im_{\rho}\Gamma_{\pi\pi}(m)$$
$$m_{\rho} = 0.77 GeV$$

S. Leupold, V. Metag, U. Mosel Int. J. Mod. Phys. E **19** (2010) 147

« in-medium broadening »

in-medium spectral function depends on ρ NN* coupling main players: N(1520), Δ (1620) , N(1720),

Coupling of ρ to baryonic resonances can be **directly** studied in **NN** and π **N** collisions at 1-2 GeV via $N^*(\Delta) \rightarrow Ne^+e^-$ decays

R. Rapp, G. Chanfray, J. Wambach Nucl. Phys. A **617** (1997) 472

R. Rapp, J. Wambach Eur. Phys. J. A **6** (1999) 415

relation to electromagnetic structure of baryons

5

Resonances: description and Dalitz decays

Resonance description: W- arbitrary resonance mass relativistic Breit-Wigner distribution $g_R(W) = A \frac{W^2 \Gamma_{tot}(W)}{(W^2 - M_R^2)^2 + W^2 \Gamma_{tot}^2(W)}$ with $\Gamma_{tot}(W) = \Gamma_{\pi N}(W) + \Gamma_{\gamma N}(W) + \Gamma_{e^+e^-N}(W) + \dots$

Dalitz decay requires a model for the form factors in the timelike region

HADES Spectrometer

- SIS18 beams: protons (1-4 GeV), nuclei (1-2 AGeV) pions (0.4-2 GeV/c) – secondary beam
- spectrometer with $\Delta M/M$ 2% at ρ/ω
- detector for rare probes:

dielectrons: e+, e-

strangeness: Λ , K^{\pm,0}, ~ \Xi^{\text{-}} , ϕ

- particle identification π/p/K combined dE/dx (MDC) and TOF : σ_{tof} ~80 ps (RPC)
 electrons : RICH (hadron blind), TOF/Pre-Shower
- upgrade(2010): new DAQ (~50 kHz) with Au+Au collisions

Geometry

- 1 m
- full azimuthal, polar angles $18^{\circ} 85^{\circ}$
- e^+e^- pair acceptance ≈ 0.35

p (1.25 GeV) + p

both hadron and dilepton exclusive channels measurement

 resonance production controlled via pion excitation

• resonance decay in dilepton exclusive channels

π⁻⁺p (0.656, 0.69, 0.748, 0.8 GeV/c)

p (3.5 GeV) + p

p+p @ 1.25 GeV – resonance production

below ppη production threshold

Cross sections production extraction – one-pion channels identification

Z. Teis *et al.,* Z. Phys. A**356** (1997) 421

10

V. Dmitriev *et al.* Nucl. Phys. A**459** (1986) 503

- **incoherent** sum of resonance contributions
- empirical angular distributions (t-channel)

G. Agakishiev *et al*. Eur. Phys. J. A**48** (2012) 74

Bonn-Gatchina group

maximum log-likelihood event-by-event A. V. Anisovich *et al*. Eur. Phys. J. A**34** (2007) 129

$$d\sigma = \frac{(2\pi)^4 |A|^2}{4|\vec{k}|\sqrt{s}} \, d\Phi_3(P, q_1, q_2, q_3)$$

$$A = \sum_{\alpha} A^{\alpha}_{tr}(s) Q^{in}_{\mu_1 \dots \mu_J}(SLJ) A_{2b}(i, S_2L_2J_2)(s_i) Q^{fin}_{\mu_1 \dots \mu_J}(i, S_2L_2J_2S'L'J)$$

initial system of two final particles system and spectator
transition amplitude
$$A^{\alpha}_{tr}(s) = \frac{a^{\alpha}_1 + a^{\alpha}_3\sqrt{s}}{s - a^{\alpha}_4} e^{ia^{\alpha}_2}$$

final state amplitude (resonant, non resonant)

PWA results: (π^+, π^0) production in pp@1.25 GeV

13 PNPI + 2 HADES data sets

J truncation (J=4)

FINAL STATES S-, P-, D-waves in pp or pn-state $P_{33}(1232)$ and $P_{11}(1440)$ in πN state

G. Agakishiev *et al*. Eur. Phys. J. A (2015) ACCEPTED

Δ^+ Dalitz decay via pn Δ^+ { \rightarrow pe⁺e⁻}

Higher resonances: p+p @ 3.5 GeV

Resonance model:

 Δ^{++} (1232) very good description of Δ -line shape ("Monitz" parameterization)

angular parametrisation as a function of *t* for all resonances

Inclusive / Exclusive p+p @ 3.5 GeV (dileptons)

G. Agakishiev *et al*. Eur. Phys. J. A **48** (2012) 64

- ρ mesons produced via baryonic
 resonances (R → ρ N → e⁺ e⁻ N)
- Resonance model with electromagnetic

Transition Form Factor from model seems to describe nicely data –

only Δ ?

14

"QED model" point-like $R \rightarrow N\gamma^*$ vertex

M. Zetenyi, G. Wolf Phys. Rev. C**67** (2003) 044002

Effect of electromagnetic transition FF / coupling to ρ meson of light baryonic resonances (N(1520),...)

→ lower limit for e^+e^- emission

- constant eTTF
- no off-shell coupling to vector mesons
- experimental σ
 for ω/ρ used

G. Agakishiev *et al*. Eur. Phys. J. A **50** (2014) 82

HADES physics for pion beams (2014)

- improve the very scarce data base for pion-nucleon reactions
- differential distributions are even more scarce (or missing)

- resonance excitation can be controlled by the variation of the projectile (pion) momentum
- HADES starts with
 p = 0.656/0.69/0.748/0.8 GeV/c
 √s = 1.46-1.55 GeV: N(1520)
- π+π- production:
 coupling of ρ to resonance
- most of data 1.3 <√s <2 from Manley *et. al* PRD30 (1984) 904 based on 240.000 events (no differential distributions)
- e+e- never measured from pion induced reactions
- resonance Dalitz decays
 R→Ne+e- (reference for p+Nb)

15

 strangeness production of nucleus: K[±], K⁰, φ

pion beam for HADES (2014)

- reaction: N+Be 8-10 \cdot 10¹⁰ N₂ ions/spill (4s)
- secondary π^- with I~3-4 · 10⁵/spill @ 0.7 GeV/c
 - limited by the radioactivity safety
- pion momentum $\Delta \mathbf{p}/\mathbf{p} = 2.2\%$ (σ) and

~50% acceptance @ central momentum

in beam tracking system: (X1,Y1/X2,Y2) for

pion momentum determination: $\Delta p/p = 0.3\%$

tools & strategy & objectives

* analysis of single and double meson production in photon- and pion-induced reactions

 $\gamma p \rightarrow \pi N, \eta N, K\Lambda, K\Sigma, \pi\pi N, \pi\eta N$ $\pi N \rightarrow \pi N, \eta N, K\Lambda, K\Sigma, \pi\pi N$

- * energy dependent approach
- * partial wave aplitude parametrization (poles: BW i.e. energy depentend)
- * combined analysis of lareg number of reactions (HADES, CLAS, ...)
- * D-matrix analysis
- * $\pi^- p$ measured with: (CH₂)_n polyethylene target, PE and carbon (C) target
- * four beam momenta: 656, 690 (large statistics), 748, 800 MeV/c

* elastic scattering

identification: $\pi^- p \rightarrow \pi^- p$

events from C target identified in PE events

comparison with SAID database & solution

luminosity extraction : $N_{beam} \otimes \rho \ d_{targ}$

absolute normalization of other channels via σ_{el}/N_{el}

* two-pion identification in channel: nπ⁺π⁻ (exclusive channel via missing mass) partial wave analysis focused on N(1520) and p production * dilepton identification in channel: ne⁺e⁻ (quasi-exclusive channel) baryon resonance Dalitz decays and two-body p decay

elastic events – comparison to SAID

18

PWA results (n $\pi^+\pi^-$) – towards N(1520)

<mark>-</mark> N(1400)π

PWA: 4 HADES data samples and huge photon and pion database

GOAL: extraction of **N(1520)D**₁₃ BR to Δπ, ρN, σN

INPUT FOR DILEPTON ANALYSIS Total **pN** contribution: **1.54 mb** (for 690 MeV/c) Manley PWA analysis (Phys. Rev. D**30** (1984) 904) **predicted much more (~5 mb)**

e⁺e⁻ simulated cocktail

LEGEND

– total

- [9.2 mb] $\pi^0 \rightarrow e^+ e^- \gamma$
- [7.4 mb] $2^*\pi^0 (\rightarrow e^+ e^- \gamma)$
- [1.0 mb] $\eta \rightarrow e^+e^-\gamma$
- [20.5 mb] $N(1520) \rightarrow n e^+e^-$
- [8.4 mb] Δ (1232) → n e⁺e⁻

CS need to be multiplied by BR

Branching Ratios π^{0} : 0.012, η : 0.006 N(1520): 4 · 10⁻⁵, Δ (1232): 4 · 10⁻⁵

- Meson production: Landolt-Börnstein
- Cocktail of point-like sources
 - \rightarrow (high m_{e+e-} underestimated)
- Strong η contribution

Dileptoncocktail

 PLUTO event generator (includes realistic momentum distribut)

Pos ACTA2007 (2007) 076 + (acc * eff) filters

(includes realistic momentum distribution of nucleons in carbon)

Exclusive e⁺e⁻ cocktail (PE target)

invariant mass for

LEGEND

- total PE (p+C)
- N(1520) Dalitz
- η Dalitz
- Δ(1232) Dalitz
- $-\rho \rightarrow e+e-$

- ρ cross sec. and mass shape derived from $π^-p \rightarrow nπ^+π^$ measured in the same experiment !
- empirical way of taking into account VDM form factors for electromagnetic decays

ightarrow excess consistent with $ho
ightarrow e^+ e^-$

FUTURE PLANS

- extend PWA to p+p @ 3.5 GeV (one-pion) and complete for the pion beam (two-pion)
- > 2018: 2-3 year time slot for pion beam experiments at SIS 18 (before the start of FAIR)

FAIR:

- higher statistics measurements (pp), liquid H target
- investigation of heavier resonances
- electromagnetic calorimeter (better electron identification, radiative decays, π^0 , η , ω reconstruction for PWA and in-medium studies)
- > 2021: HADES at FAIR(p and ion beams, possibly pions...)

- resonance production in NN and πN via exclusive chanels within PWA (Bonn-Gatchina approach)
- selective study of e⁺e[−] production from Dalitz decay of resonances → sensitivity to baryonic resonances
 (time-like electromagnetic structure / coupling to ρN)

Recent pion beam experiment:

- promising data: π⁺π⁻ and e⁺e⁻ (important constraint for models) strong off-shell ρ contribution
- PWA: expected determination of N(1520) coupling to ρN
- verification of model predictions on ω/ρ interferences
- continuation at SIS18 in 2017-18 (with ECAL)

CREDITS

25

The HADES Collaboration

Special thanks to Andrey V. Sarantsev (Bn-Ga group)

25