Experimental results on the meson-nucleus optical potential and mesic states

Volker Metag II. Physikalisches Institut

JUSTUS-LIEBIG-

for the CBELSA/TAPS Collaboration

Outline:

- theoretical predictions for meson-nucleus optical potentials
- exp. approaches and results on the imaginary part of the ω , η '- nucleus potential
- \bullet exp. approaches and results on the real part of the ω , η '- nucleus potential
- search for meson-nucleus bound states
- summary & outlook

*funded by the DFG within SFB/TR16

International School of Nuclear Physics; 37th Course Probing Hadron Structure with Lepton and Hadron beams Erice, Sicily, Sept. 16-24, 2015

meson-nucleus interactions; FRS@GSI mesic states **BigRIPS@RIKEN** ³He deeply bound pionic states: **Electromagnetic (+Strong)** n interaction 206Pb NUCLEUS Kenta Itahashi priv. com. POTENTIAL ²²\$n(d,³He) 2s $|\theta| < 2^{\circ}$ 50 ...S 2p 40 a.u 30 ╷╷╪╷╷╪╷╪╷┊ ╷╷╪╷╷╪╷╪╴┊ 20 VCOULOMB Rnuc 10 charged pion \Leftrightarrow nucleus -142 -140 -138 -136 -144 -134 bound by superposition of attractive Coulomb-Q-value [MeV] and repulsive strong excitation energy spectrum interaction of $\pi^{-}\otimes^{121}$ In system

FRS@GSI BigRIPS@RIKEN

meson-nucleus interactions; mesic states

deeply bound pionic states:

Electromagnetic (+Strong) interaction

charged pion \Leftrightarrow nucleus

bound by superposition of attractive Coulomband repulsive strong interaction

FRS@GSI BigRIPS@RIKEN

meson-nucleus interactions; mesic states

deeply bound pionic states:

Electromagnetic (+Strong) interaction

charged pion \Leftrightarrow nucleus

bound by superposition of attractive Coulomband repulsive strong interaction

$\omega, \eta, \eta' \leftrightarrow nucleus$

bound solely by the strong interaction

symmetry breaking in the hadronic sector

nonet of pseudoscalar mesons

symmetry breaking in the hadronic sector

nonet of pseudoscalar mesons

symmetry breaking in the hadronic sector

nonet of pseudoscalar mesons

mass as a result of symmetry breaking

partial restoration of chiral symmetry predicted in a nucleus → impact on in-medium meson masses ??

 MeV/c^2

model predictions for the in-medium mass of the η ' meson

model predictions for in-medium mass/width of the ω meson

N⁻¹

meson-nucleus optical potential

$$U(r) = V(r) + iW(r)$$

meson-nucleus optical potential

$$U(r) = V(r) + iW(r)$$

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

meson-nucleus optical potential

$$U(r) = V(r) + iW(r)$$

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

$$W(r) = -\Gamma_0/2 \cdot \frac{\rho(r)}{\rho_0}$$

$$W(r) = -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \sigma_{inel} \cdot \beta$$

real part

Û

in-medium mass modification

imaginary part

in-medium width inelastic cross section

experimental approaches to determine the meson-nucleus optical potential

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

- line shape analysis
- excitation function
- momentum distribution
- meson-nucleus bound states

- line shape analysis
- excitation function
- momentum distribution
- meson-nucleus bound states

transparency ratio measurement

$$\Gamma_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

The imaginary part W of the meson-nucleus optical potential

imaginary part of the ω - and η '-nucleus optical potential

η΄

what have we learned from transparency ratio measurements ?

- transparency ratio measurements provide information on absorption of mesons in nuclei \Rightarrow imaginary part W($\rho = \rho_0$) of meson-nucleus potential; applicable for any meson lifetime
- ω, η',Φ mesons show broadening in nuclei;

lifetime shortened (width increased) by inelastic processes

	Γ(ρ₀) [MeV]	[GeV/c]	W(ρ=ρ ₀) [MeV]	σ _{inel} [mb]	experiment
ω	130-150	١,١	65-75	≈ 60	CBELSA/ TAPS
η'	15-25	Ι,Ι	7.5-12.5	3-10	CBELSA/ TAPS
Φ	30-60	0,6-1,4	15-30	14-21	ANKE@ COSY
Φ	100 ⁺⁵⁰ -30	I,8	50 ⁺²⁵ -15	35 ⁺¹⁷ -11	LEPS@ SPring-8

momentum dependence of T_A^C , Γ and σ_{inel} for ω mesons

momentum dependence of T_A^C , Γ and σ_{inel} for ω mesons

momentum dependence of T_A^C , Γ and σ_{inel} for ω mesons

real part of the optical potential from excitation functions and momentum distributions

The real part of the ω -nucleus potential

J.Weil, U. Mosel and V. Metag, PLB 723 (2013) 120 $\omega \rightarrow \pi^0 \gamma$

sensitive to nuclear density at production point

• measurement of the excitation function

of the meson

in case of dropping mass higher meson yield for given \sqrt{s} because of increased phase space due to lowering of the production threshold

\Rightarrow cross section enhancement

 $\pi^0\gamma$ excitation function 10⁻¹ $\gamma^{12}C \rightarrow \pi^0 \gamma N X$ a/A [ub] 10⁻² vac $\mathsf{E}_{\mathsf{Y}}^{\mathsf{thr}}$ 10⁻³ CB+shif shift 0.9 0.8 1 1.1 1.2 1.3 1.4 1.5 E_v[GeV]

The real part of the ω -nucleus potential

J.Weil, U. Mosel and V. Metag, PLB 723 (2013) 120 $\omega \rightarrow \pi^0 \gamma$

sensitive to nuclear density at production point

- <u>measurement of the excitation function</u> of the meson
- in case of dropping mass higher meson yield for given \sqrt{s} because of increased phase space due to lowering of the production threshold

\Rightarrow cross section enhancement

σ/A [μb]

• momentum distribution of the meson:

in case of dropping mass - when leaving the nucleus hadron has to become on-shell; mass generated at the expense of kinetic energy

\Rightarrow downward shift of momentum distribution

 $\pi^0\gamma$ momentum distribution

The real part of the ω -nucleus potential

$$\gamma A \rightarrow \omega X$$

CB/TAPS @ MAMI

V. Metag et al., PPNP, 67 (2012) 530.

M.Thiel et al., EPJA 49 (2013) 132

 $V_{\omega}(\rho = \rho_0) = -(42 \pm 17(\text{stat}) \pm 20(\text{syst})) \text{ MeV}$

ω

The real part of the η '-nucleus potential

The real part of the η '-nucleus potential

Mariana Nanova

data compared to calculations by E. Paryev (priv. com.)

$\begin{array}{c} \mbox{real part of ω-nucleus potential from ω kinetic energy} \\ \mbox{CBELSA/TAPS @ ELSA} & \begin{tabular}{c} & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$

the higher the attraction the lower the kinetic energy of the $\boldsymbol{\omega}$ meson

 $\mathbf{p}_{|0| \le \theta_p \le ||0|}$

real part of ω -nucleus potential from ω kinetic energy

the higher the attraction the lower the kinetic energy of the ω meson

H. Nagahiro, priv. com.

real part of ω -nucleus potential from ω kinetic energy CBELSA/TAPS @ ELSA ω E_y=1.25-3.1 GeV $\mathbf{p}_{|0| \le \theta_p \le ||0|}$ the higher the attraction the lower the kinetic energy of the ω meson S. Friedrich, PLB 736 (2014) 26 H. Nagahiro, priv. com. dΩ [nb/MeV/sr] 5. peak position [MeV] $d^{c}\sigma_{\pi\gamma}/dE_{kin}$ d Ω [nb/MeV/sr] Carbon **80** 2.1 $d^2 \sigma_{\pi^0_0} / dE_{kin}$ (**70** 60 0.5 **50** (V₀, W₀) 1.6 156,70) Me\ 00,70) MeV 40 1.5 50,70) MeV 0,70) MeV 20,70) MeV 1.4 50.70) MeV 30 $E_{kin}=(60.5\pm7)MeV$ -0.520 30 90 40 80 60 50 70 -150 -100 50 -50 E₁₀, -782 [MeV] potential depth [MeV] -200 -100 200 -300 300 100 0 400

E₁₀ -782 [MeV]

real part of ω -nucleus potential from ω kinetic energy CBELSA/TAPS @ ELSA ω E_y=1.25-3.1 GeV $\mathbf{p}_{|0| \le \theta_p \le ||0|}$ the higher the attraction the lower the kinetic energy of the ω meson S. Friedrich, PLB 736 (2014) 26 H. Nagahiro, priv. com. dΩ [nb/MeV/sr position [MeV] $d^{c}\sigma_{\pi\gamma}^{o}/dE_{kin} d\Omega [nb/MeV/sr]$ 80 Carbon $d^2 \sigma_{\pi^0_{\gamma}} / dE_{kin}$ 70 peak 60 0.5 50 (V₀, W₀) 1.6 156,70) Me\ 00,70) MeV 40 1.5 50,70) MeV 0,70) MeV 20,70) MeV 1.4 50.70) MeV 30 Ekin=(60.5±7)MeV -0.5 20 30 90 40 80 50 60 70 -150 -100 0 50 -50 E₁₀ -782 [MeV] potential depth [MeV] -300 -200 200 300 -100 100 0 400 E_q. -782 [MeV]

 $V_{\omega}(p_{\omega} \approx 300 \text{ MeV/c}; \rho = \rho_0) = -(15 \pm 35) \text{ MeV}$

the higher the attraction the lower the kinetic energy of the η ' meson

E. Paryev, arXiv: 1503.09007

the higher the attraction the lower the kinetic energy of the η ' meson

E. Paryev, arXiv: 1503.09007

the higher the attraction the lower the kinetic energy of the η ' meson

 $V_{\eta'}(<\!\!p_{\eta'}\!\!>\approx\!500~MeV/c;\rho\!=\!\rho_0)\approx\text{-}(36\pm\!22)~MeV$

E. Paryev, arXiv: 1503.09007

 $V_{\eta'A}(\rho = \rho_0) =$ -(30±3(stat)±15(syst))MeV

 $V_{\omega A}(\rho = \rho_0) =$ -(29±19(stat)±20(syst))MeV

compilation of results for real and imaginary part of the ω, η' -nucleus optical potential $U_{\omega A}(\rho = \rho_0) =$ $U_{n'A}(\rho = \rho_0) =$ -((29±19(stat)±20(syst) + i(70±10)) MeV -((30±3(stat)±15(syst) + i(10±3)) MeV imaginary part [MeV] 90⁻ Im U > Re U 80 ω 70 V. Metag 60 Hyp.Int. 234 (2015) 25 50 40 Re U >> Im U 30 20 10

60

80

100

21

40

20

summary of theoretical predictions and experimental results on $U_{\eta'}(\rho_0) = V_{real}(\rho_0) + i W_{imag}(\rho_0)$

search for η '-mesic states in hadronic reactions

¹²C(p,d)η'⊗¹¹C

K. Itahashi et al., PETP 128 (2012) 601 H. Nagahiro et al., PRC 87 (2013) 045201

particle identification by time-of-flight

analysis ongoing

BGO-OD@ELSA

¹²C(γ,p) η'X @ 1.5-2.8 GeV

formation and decay of η '-mesic state

BGO-OD ideally suited for exclusive measurement

approved proposal: ELSA/3-2012-BGO

BGO-OD@ELSA

¹²C(γ,p) η'X @ 1.5-2.8 GeV

formation and decay of η '-mesic state

BGO-OD ideally suited for exclusive measurement

approved proposal: ELSA/3-2012-BGO

<u>outlook</u>: search for η '-mesic states in photo-nuclear reactions

approved proposal: ELSA/3-2012-BGO

2 m (Vert)

4 m (Hori)

z=12 m

Resistive Plate

Chamber (RPC)

summary

• real and imaginary part of the ω and η '-nucleus potential have been determined first (indirect) observation of an in-medium mass shift of the pseudo-scalar η ' meson by $\Delta m(\rho = \rho_0) \approx -30$ MeV

only weak attraction between ω, η' mesons and nuclei

 $\omega: | Im \cup | > | Re \cup | \rightarrow not a good candidate for the search for mesic states$

 $\eta': |_{Re} \cup | >> |_{Im} \cup | \rightarrow \text{good candidate for the search for mesic states}$

first results on momentum dependence of the ω - and η '-nucleus optical potential

The run for η' mesic states has started:

photo-nuclear experiments: LEPS2, BGO-OD: ${}^{12}C(\gamma, p) \eta' \otimes {}^{11}B$ N. Muaramtsu, T. Nakano hadronic pick-up reaction: FRS@GSI: ${}^{12}C(p,d) \eta' \otimes {}^{11}C$ K.Itahashi, H. Fujioka, Y. Tanaka

The real part of the η '-nucleus potential

Mariana Nanova

data compared to calculations by E. Paryev (priv. com.)

