

Exploring Nucleon Spin Structure with Colliders

Why Collider? Advantages & complementarity

RHIC Spin program (polarized p-p) at BNL & recent results

Future Electron Ion Collider (EIC polarized e-p): science and status

Stony Brook University

Complementary kinematic regions of Collider vs. fixed target experiments

Complementary techniques

Photons colorless: forced to interact at NLO with gluons

Can't distinguish between quarks and anti-quarks

- Why not use polarized quarks and gluons abundantly available in protons as probes ? Precise kinematic
 - reconstruction difficult in inclusive measurements

Abhay Deshpande

0000

RHIC as a Polarized p-p Collider

Two major collider detectors

RHIC Spin Program $\frac{1}{2} = \left| \frac{1}{2} \Delta \Sigma + L_Q \right| + \left[\Delta g + L_G \right]$

Theory curves: LSS10p (dashed), DSSV14 (so id) and NNPDF1.1 (dotted)

0.05

ſ

0

0.1

Principle data sets to be included in the Next-to-Leading-Order (NLO) calculations By theorists (DSSV) DeFlorian, Sassot, Stratmann & Vogelsang (2008-2014) Leader et al. (LSS), and recently neural network in to PDFs (NNPDF)

0.1

x_⊤ (=2p₋/√s)

0

Abhay Deshpande

±6.5% polarization scale uncertainty not shown

0.3

 $x_T (= 2p_T / \sqrt{s})$

0.2

le

Status of
$$\Delta g \& \Delta \Sigma$$

$$\frac{1}{2} = \left[\frac{1}{2}\Delta\Sigma + L_Q\right] + \left[\Delta g + L_G\right]$$

 $\int_{0.001}^{1} \Delta \Sigma(x) \, dx = 0.366 \pm_{0.062}^{0.042} \int_{0.05}^{0.2} \Delta g(x) \, dx = 0.1 \pm_{0.07}^{0.062}$

After RHIC-Spin Program:

 $\Delta g \sim 1.0 + - 1.5$ before RHIC

- \succ Confidence in $\Delta\Sigma$
- Ag needs significant broadening in x-range to make it more precise
- No measurements of L_G, L_Q

Leads directly to the future Electron Ion Collider (EIC)

Stony Brook University

Anti-Quark Polarization measurement via W production and decay

 $\sqrt{s} = 500 \text{ GeV}$

 Large parity violating effect anticipated

$$A_L = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \neq 0$$

- Measurement complimentary to SIDIS, but devoid of fragmentation function makes it cleaner!
- NLO analyses about now available

"W+/- $\rightarrow e^{+/-}$ " STAR ($|\eta| < 1.2$) & PHENIX ($|\eta| < 0.35$) $\eta = -\infty$ $\eta = +\circ$

Transverse spin introduction

$$A_N \sim \frac{m_q}{p_T} \alpha_S$$

Kane, Pumplin, Repko 1978

- Since people starved to measure effects at high p_T to interpret them in pQCD frameworks, this was "neglected" as it was expected to be small..... However....
- Pion production in single transverse spin collisions showed us something different....

Transverse spin asymmetries @ RHIC

Other unexpected discoveries...

- Large very forward neutron asymmetry found at RHIC.
- Center of Mass & p_T dependence studied
- Not understood how it arises: a challenge to theorist

Transverse spin data @ RHIC:

Large transvers spin asymmetries at high Center of Mass \rightarrow Surprise! Various questions being studied...

What is the underlying mechanism?

Observed p_T dependence A_N consistent with expectations? Can TMD evolution be seen in RHIC data?

Can the we study factorization breaking using RHIC p+p data?

Stony Brook University

Possible origins of transverse spin effects:

In p-p scattering you will always see a combination of both. → Fragmentation functions need to be measured in e+e- to disentangle various observed effects: now underway

Stony Brook University

STAR: jet + $\pi^{+/-}$ +X and $\pi^++\pi^-+X$ transversity x fragmentation function $\neq 0$

Between now and 2017/2018

Could continue these studies with focus on high h should the EIC get delayed: with PHENIX and STAR detector Upgrades Stony Brook University Abhay Deshpande

Unified view of the Nucleon Structure

□ (2+1)D imaging Quarks (Jlab/COMPASS), Gluons (COMPASS/EIC)

♦ TMDs – confined motion in a nucleon (semi-inclusive DIS)

GPDs – Spatial imaging of quarks and gluons (exclusive DIS & diffraction)
 Stony Brook University

The Electron Ion Collider

Two proposals for realization of the Science Case

Abhay Deshpande

21

* Stony Brook University

The Electron Ion Collider

Two proposals for realization of the Science Case

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- ✓ e beam 5-10(20) GeV
- ✓ Luminosity L_{ep} ~ 10³³⁻³⁴ cm⁻²sec⁻¹
 100-1000 times HERA
- ✓ 20-100 (140) GeV Variable CoM

For e-A collisions at the EIC:

- ✓ Wide range in nuclei
- ✓ Luminosity per nucleon same as e-p
- ✓ Variable center of mass energy

World's first

Polarized electron-proton/light ion and electron-Nucleus collider

Both designs use DOE's significant investments in infrastructure

* Stony Brook University

Physics vs. Luminosity & Energy

$$\frac{1}{2} = \left[\frac{1}{2}\Delta\Sigma + L_Q\right] + \left[\Delta g + L_G\right]$$

Our Understanding of Nucleon Spin

$$\begin{split} \Delta\Sigma/2 &= \text{Quark contribution to Proton Spin}\\ L_{\text{Q}} &= \text{Quark Orbital Ang. Mom}\\ \Delta g &= \text{Gluon contribution to Proton Spin}\\ L_{\text{G}} &= \text{Gluon Orbital Ang. Mom} \end{split}$$

Precision in $\Delta\Sigma$ and $\Delta g \rightarrow A$ clear idea Of the magnitude of L_Q+L_G

* Stony Brook University

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2D (transverse spatial) + 1D (longitudinal momentum) coordinate space images from exclusive scattering

Position Γ X Momentum $\rho \rightarrow$ Orbital Motion of Partons

Prospect of direct comparison with lattice QCD > Quark GPDs and its orbital contribution to the proton spin: $J_q = \frac{1}{2} \lim_{t \to 0} \int dx \, x \quad (General. Parton Dist.s H, E) = \frac{1}{2} \Delta q + L_q$

The first meaningful constraint on quark orbital contribution to proton spin by combining the sea from the EIC and valence region from JLab12/COMPASS

J_{q,} calculated on Lattice **QCD**:

Future:

New developments on LQCD calculating parton distributions including gluon distributions:

X. Ji et al. PRL 111 (2013) 112002
Y. Hatta, PRD89 (2014) 8, 085030
& Y.-Q. Ma, J.-W. Qiu 1404.6860

August 3, 2015

ln x

First observation of gluon recombination effects in nuclei: →leading to a <u>collective</u> gluonic system!

First observation of g-g recombination in <u>different</u> nuclei \rightarrow Is this a universal property?

 \rightarrow Is the Color Glass Condensate the correct effective theory?

Status and prospects of US EIC

- EIC part of the 2015 Long Range Planning Discussion
- Will be released October 15, 2015 by the Nuclear Science Advisory Committee
 - All indications are positive, but we need to wait and see
- EIC User Group is being formed (contact me if you are interested)
 - 1st Official User Group Meeting at Stony Brook U. June 2014
 - 2nd meeting planned at Berkeley, January 6-9, 2016 (INVITATION)
- EIC Detector R&D Funding available

~140 physicists, 31 institutes (5 Labs, 22 Universities, 9 Non-US Institutions) 15+ detector consortia exploring novel technologies for tracking, particle ID, calorimetry

→<u>https://wiki.bnl.gov/conferences/index.php/EIC_R%25D</u>

→There is need and there is opportunity for YOU to join and contribute

Summary:

- DIS, p-p, and ee contributed complementarily to the development of SM of High Energy Physics
 Same true for Spin Physics and QCD [RHIC, polarized DIS, polarized e+e- at Belle for fragmentation studies]
- RHIC addressed Δg significantly (limited x), Anti-Quarks, and systematically explores transverse spin phenomena
 - Enormous richness of 3D structure of the proton emphasized
- Spin physics program at the future polarized EIC will address all of this and provide the concrete answers to those open questions and more...

Thank You

Abhay Deshpande Stony Brook University September 17, 2015 Erice, 37th School at the Ettore Majorana Center

August 3, 2015

How to explore/study this new phase of matter? (multi-TeV) e-p collider (LHeC) OR <u>a (multi-10s GeV) e-A collider</u>

August 3, 2015

How to explore/study this new phase of matter? (multi-TeV) e-p collider (LHeC) OR <u>a (multi-10s GeV) e-A collider</u>

Advantage of nucleus \rightarrow

Final vote on Long Range Plan US NSAC: EIC Part of this plan (to be released October 15, 2015)

An active Generic Detector R&D Program for EIC underway, (supported by DOE, administered by BNL):

~140 physicists, 31 institutes (5 Labs, 22 Universities, 9 Non-US Institutions) 15+ detector consortia exploring novel technologies for tracking, particle ID, calorimetry

→<u>https://wiki.bnl.gov/conferences/index.php/EIC_R%25D</u>

Invitation: Ample opportunities for your contributions

The EIC Users Meeting at Stony Brook, June 2014:

~180 participants from all over the world (Europeans and Asian QCD group representatives participated actively) :

→<u>http://skipper.physics.sunysb.edu/~eicug/meetings/SBU.html</u>

Next Meeting of the EIC User Group: January 6-9, 2016 University of California @ Berkeley

Stony Brook University

The RHIC Spin Program (early 2000) $\frac{1}{2} = \left[\frac{1}{2}\Delta\Sigma + L_Q\right] + \left[\Delta g + L_G\right]$

- Direct determination of polarized gluon distribution (and contribution to) in the polarized proton
 - Polarized fixed target experiments and NLO global analyses suggested $\Delta\Sigma \sim 0.25$ +/-0.05 & $\Delta g \sim 1.0$ +/- 1.5
- Direct determination of anti-quark polarization via using the maximal parity violating electro-weak (W^{+/-}) probes
 - SIDIS: questions regarding contamination from high-twist and large uncertainties in polarized fragmentation functions
- Systematic study of transverse spin phenomena
 - Many un-understood single spin asymmetries observed but none expected

Stony Brook University

Stony Brook University

RHIC: The most versatile collider yet

* Stony Brook University

1504.07451v1 to be published PRD

RHIC W→e Combined results 2011-2013

Pion asymmetries: at most CM energies! $x_F = P_L/P_L^{\max} = 2P_L/\sqrt{s}$

* Stony Brook University

Pion asymmetries: at most CM energies!

* Stony Brook University

STAR EM Jets high η

Recent PHENIX results

Near term RHIC Detector Upgrades Spin and non-spin physics programs

sPHENIX → forward sPHENIX → An EIC/eRHIC detector (not shown)

STAR upgrade: Forward Calorimeter System (FCS)

* Stony Brook University

What does a proton look like? Un-polarized & polarized

We only have a 1-dimensional picture!

Need to go beyond 1-dimension!

Need 3D Images of nucleons in <u>Momentum & Position space</u> Could they give us clues on orbital motion of partons? → Finally help solve the spin puzzle?

Х

US EIC: Kinematic reach & properties

Stony Brook University