Low-energy resonances in the ²²Ne(p,γ)²³Na reaction directly observed at LUNA

R. Depalo* for the LUNA collaboration

*Università degli Studi di Padova and INFN Padova

International School of Nuclear Physics - Erice, 16-24/09/2014

Astrophysical motivation

The Neon - Sodium cycle strongly influences the abundance of Ne, Na, Mg and Al isotopes in:

- Shell hydrogen burning in Red Giant Branch and Asymptotic Giant Branch stars
- Explosive H burning in classical novae

²²Ne(p,γ)²³Na is the most uncertain reaction in the NeNa cycle

State of the art

Experimental setup

Gas target characterization

Gas density without beam: pressure and temperature profiles measurement

Target chamber equipped with many flanges along the beam direction

Gas target characterization

Gas density reduction due to beam heating measured with the resonance scan technique

Setup for ²²Ne+p resonances study

 γ ray background below 3MeV suppressed by three orders of magnitude

Detection efficiency

Detection efficiency measured with 4 point-like radioactive sources

Source	Eγ [keV]	
⁷ Be	477.6	
¹³⁷ Cs	661.7	
⁶⁰ Co	1173.2 1332.5	
⁸⁸ Y	898 1863.1	

Efficiency curve extended up to 6.79 MeV exploiting the ${}^{14}N(p,\gamma){}^{15}O$ resonance at 278 keV

Results

9 resonances investigated

- 5 resonances directly observed for the first time
- New upper limits for all other resonances

*D. G. Jenkins Phys Rev C 87, 064301 (2013)

Results: E_{res}= 157 keV (E_{lev}= 8944 keV)

Results: E_{res} = 258 keV (E_{lev} = 9041 keV)

Resonance scan (55° detector)

Results: $E_{res} = 258 \text{ keV} (E_{lev} = 9041 \text{ keV})$

Results: E_{res} = 258 keV (E_{lev} = 9041 keV)

Results: 320 + 334 keV resonances

Summary

E _{level} [keV]	E _{res} LAB [keV]	ωγ [eV] NACRE [1,2]	ωγ [eV] Hale et al. [3]	ωγ [eV] LUNA
8862?	71	≤ 4.2E-9	≤ 1.9E-10	≤ 4.5E-9
8894?	105	≤ 6.0E-7	≤ 1.4E-7	≤ 3.6E-9
8944	157	6.5E-7	≤ 9.2E-9	3.8 E-8
8972	186	≤ 2.6E-6	≤ 2.6E-6	1.4 E-6
9000?	215	≤ 1.4E-6	≤ 1.4E-6	≤ 2.4E-8
9041	258	≤ 2.6E-6	≤ 1.3E-7	6.2 E-6
9072	291	≤ 2.2E-6	≤ 2.2E-6	≤ 8.1E-8
9100	320	≤ 2.2E-6	≤ 2.2E-6	2.8 E-7
9113	334	≤ 3.0E-6	≤ 3.0E-6	7.7 E-7

[1] C. Angulo et al. Nucl. Phys. A **656**, 3 - 183 (1999)

- [2] J. Görres et al. Nucl. Phys. A **385**, 57 (1982)
- [3] S. E. Hale et al. Phys. Rev. C 65, 015801 (2001)

Summary

Thanks to the extremely low background at Gran Sasso Laboratories, the 22 Ne(p, γ) 23 Na cross section has been measured directly at astrophysical energies:

5 resonances have been observed for the first time

New upper limits will be available for unobserved resonances

Resonances strength presently known as upper limits will be further investigated in the next phase of the experiment:

• A new reaction chamber surrounded by a 4π BGO detector with high detection efficiency will be set-up in the next months

LUNA Collaboration

INFN - LNGS (Italia): A. Best, A. Formicola, S. Gazzana, M. Junker, L. Leonzi, A. Razeto

HZDR (Germania): D. Bemmerer, T. Szücs, M. Takács

INFN Padova (Italia): C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo

INFN Roma La Sapienza (Italia): C. Gustavino

ATOMKI, Debrecen (Ungheria): Z. Elekes, Zs.Fülöp, Gy. Gyurky, E.Somorjai

Osservatorio di Collurania (Italia): O. Straniero

Ruhr-Universität Bochum (Germania): F. Strieder

University of Edinburgh (UK): M. Aliotta, T. Davinson, C. Bruno

Università di Genova (Italia): F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati

Università e INFN Milano (Italy): A. Guglielmetti, D. Trezzi

Università e INFN Napoli (Italia): G. Imbriani, A. Di Leva

Università e INFN Torino (Italia): G.Gervino

