

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab initio treatment of nuclear reactions

International School of Nuclear Physics 36th Course Nuclei in the Laboratory and in the Cosmos Erice-Sicily September 16-24, 2014

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienr

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

- Ab initio calculations in nuclear physics
 - Chiral NN and 3N interactions
- No-core shell model
- Including the continuum with the resonating group method
 - NCSM/RGM: n-4He, ³He(d,p)⁴He, ⁷Be(p,γ)⁸B
 - NCSMC: ^{5,7}He, ³He-⁴He, ³He(α,γ)⁷Be, ¹¹N (*p*-¹⁰C)
 - Three-body cluster dynamics: ⁶He
- Outlook

Ab initio Nuclear Structure & Reaction approaches

Ab initio

- \diamond All nucleons are active
- ♦ Exact Pauli principle
- \diamond Realistic inter-nucleon interactions
 - Accurate description of NN (and 3N) data
- \diamond Controllable approximations

Chiral Effective Field Theory

- First principles for Nuclear Physics: QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

The ab initio no-core shell model (NCSM)

- The NCSM is a technique for the solution of the A-nucleon bound-state problem
- Realistic nuclear Hamiltonian
 - High-precision nucleon-nucleon potentials
 - Three-nucleon interactions
- Finite harmonic oscillator (HO) basis
 - A-nucleon HO basis states
 - complete $N_{max}\hbar\Omega$ model space

- Acceleration of convergence by a sequence of unitary transformations in momentum space
 - Similarity-Renormalization-Group (SRG) evolved NN(+NNN) potential

Convergence to exact solution with increasing N_{max} for bound states. No coupling to continuum.

Calculations with chiral 3N: SRG renormalization needed

NCSM calculations of ⁶He and ⁷He g.s. energies

Soft SRG evolved NN potential
 N_{max} convergence OK
 Extrapolation feasible

$E_{\rm g.s.}$ [MeV]	⁴ He	⁶ He	$^{7}\mathrm{He}$
NCSM $N_{\text{max}}=12$	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

- ⁷He unbound
 - Expt. *E*_{th}=+0.430(3) MeV: NCSM *E*_{th}≈ +1 MeV
 - Expt. width 0.182(5) MeV: NCSM no information about the width

⁷He unbound

Extending no-core shell model beyond bound states

Include more many nucleon correlations...

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} (\{\vec{\xi}_{1\kappa}\}) \qquad (a_{1\kappa} = A)$$

$$(a_{1\kappa} = A)$$

$$\phi_{1\kappa}$$

$$+ \sum_{\nu} \hat{A}_{\nu} \phi_{1\nu} (\{\vec{\xi}_{1\nu}\}) \phi_{2\nu} (\{\vec{\xi}_{2\nu}\}) g_{\nu}(\vec{r}_{\nu}) \qquad \phi_{1\nu} \phi_{2\nu} (a_{2\nu})$$

$$(a_{1\nu}) (a_{2\nu}) a_{1\nu} + a_{2\nu} = A$$

$$+ \sum_{\mu} \hat{A}_{\mu} \phi_{1\mu} (\{\vec{\xi}_{1\mu}\}) \phi_{2\mu} (\{\vec{\xi}_{2\mu}\}) \phi_{3\mu} (\{\vec{\xi}_{3\mu}\}) G_{\mu}(\vec{r}_{\mu 1}, \vec{r}_{\mu 2}) \qquad (a_{2\mu}) \phi_{1\mu} \phi_{2\mu} (a_{2\mu}) \phi_{1\mu} (a_{2\mu}) \phi_{3\mu} (a_{2\mu}) \phi_{3\mu}$$

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

• ϕ : antisymmetric cluster wave functions

- {ξ}: Translationally invariant internal coordinates

(Jacobi relative coordinates)

- These are known, they are an input

$$\begin{split} \psi^{(A)} &= \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right) & (a_{1\kappa} = A) \\ & \phi_{1\kappa} \\ &+ \sum_{\nu} \widehat{A}_{\nu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu}(\vec{r}_{\nu}) & \phi_{1\nu} (a_{2\nu}) \\ & a_{1\nu} + a_{2\nu} = A \\ &+ \sum_{\mu} \widehat{A}_{\mu} \phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\mu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{3\mu} \right\} \right) G_{\mu}(\vec{R}_{\mu 1}, \vec{R}_{\mu 2}) & (a_{2\mu}) (a_{2\mu$$

• A_{ν}, A_{μ} : intercluster antisymmetrizers

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

Antisymmetrize the wave function for exchanges of nucleons between clusters

Example:

$$a_{1\nu} = A - 1, \ a_{2\nu} = 1 \implies \hat{A}_{\nu} = \frac{1}{\sqrt{A}} \left[1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right]$$

• >

- *c*, *g* and *G*: discrete and continuous linear variational amplitudes
 - Unknowns to be determined

- Discrete and continuous set of basis functions
 - Non-orthogonal
 - Over-complete

Binary cluster wave function

$$\begin{split} \psi^{(A)} &= \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right) \\ &+ \sum_{\nu} \int g_{\nu}(\vec{r}) \ \hat{A}_{\nu} \left[\phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) \delta(\vec{r} - \vec{r}_{\nu}) \right] d\vec{r} \\ &+ \sum_{\mu} \iint G_{\mu}(\vec{R}_{1}, \vec{R}_{2}) \ \hat{A}_{\mu} \left[\phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{3\mu} \right\} \right) \delta(\vec{R}_{1} - \vec{R}_{\mu 1}) \delta(\vec{R}_{2} - \vec{R}_{\mu 2}) \right] d\vec{R}_{1} d\vec{R}_{2} \\ &+ \cdots \end{split}$$

- In practice: function space limited by using relatively simple forms of Ψ chosen according to physical intuition and energetical arguments
 - Most common: expansion over binary-cluster basis

The ab initio NCSM/RGM in a snapshot

• Ansatz: $\Psi^{(A)} = \sum_{\nu} \int d\vec{r} \, \phi_{\nu}(\vec{r}) \hat{\mathcal{A}} \, \Phi^{(A-a,a)}_{\nu \vec{r}}$

a,a)

$$(A-a) \overrightarrow{r}_{A-a,a} (a)$$
eigenstates of
 $H_{(A-a)}$ and $H_{(a)}$
in the *ab initio*
NCSM basis

Many-body Schrödinger equation:

$$H\Psi^{(A)} = E\Psi^{(A)}$$

$$\downarrow$$

$$\sum_{v} \int d\vec{r} \left[\mathcal{H}^{(A-a,a)}_{\mu\nu}(\vec{r}',\vec{r}) - E\mathcal{N}^{(A-a,a)}_{\mu\nu}(\vec{r}',\vec{r}) \right] \phi_{v}(\vec{r}) = 0$$
realistic nuclear Hamiltonian
$$\langle \Phi^{(A-a,a)}_{\mu\vec{r}'} | \hat{\mathcal{A}}H\hat{\mathcal{A}} | \Phi^{(A-a,a)}_{v\vec{r}} \rangle$$
Hamiltonian kernel
Norm kernel
Norm kernel

Norm kernel (Pauli principle) Single-nucleon projectile

$$N_{v'v}^{J^{\pi}T}(r',r) = \delta_{v'v} \frac{\delta(r'-r)}{r'r} - (A-1)\sum_{n'n} R_{n'\ell'}(r')R_{n\ell}(r) \left\langle \Phi_{v'n'}^{J^{\pi}T} \middle| \hat{P}_{A-1,A} \middle| \Phi_{vn}^{J^{\pi}T} \right\rangle$$
Direct term:
Treated exactly!
(in the full space)
$$V'$$

$$-(A-1) \times \left(a=1\right)$$

$$\frac{\delta(r-r_{A-a,a})}{rr_{A-a,a}} = \sum_{n} R_{n\ell}(r)R_{n\ell}(r_{A-a,a})$$

Microscopic *R*-matrix on a Lagrange mesh

Separation into "internal" and "external" regions at the channel radius a

– This is achieved through the Bloch operator:

$$L_c = \frac{\hbar^2}{2\mu_c} \delta(r-a) \left(\frac{d}{dr} - \frac{B_c}{r}\right)$$

- System of Bloch-Schrödinger equations:

$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\right] u_c(r) + \sum_{c'} \int dr' r' W_{cc'}(r, r') u_{c'}(r') = L_c u_c(r)$$

- Internal region: expansion on square-integrable Lagrange mesh basis
- External region: asymptotic form for large r

$$u_c(r) \sim C_c W(k_c r)$$
 or $u_c(r) \sim v_c^{-\frac{1}{2}} \left[\delta_{ci} I_c(k_c r) \underbrace{U_c} O_c(k_c r) \right]$

Bound state

TRIUMF

Scattering state

Scattering matrix

 $u_c(r) = \sum A_{cn} f_n(r)$

 $\left\{ax_n \in [0,a]\right\}$

 $\int_0^1 g(x) dx \approx \sum_{n=1}^N \lambda_n g(x_n)$

 $\int_0^a f_n(r) f_{n'}(r) dr \approx \delta_{nn'}$

n-⁴He scattering: NN vs. NN+NNN interactions

PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-⁴He scattering with three-nucleon forces

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

chiral NN+NNN(500) chiral NN+NNN-induced SRG λ =2 fm⁻¹ HO N_{max}=13, hΩ=20 MeV

⁴He g.s. and 6 excited states

29.89	2+,0	
<u>28.37 2839 28.64</u>	28.67	2 ^{+,0}
28.31	1+,0	1-,0
27.42	2+,0	
25, 9 5	1-,1	
25,28	0~,1	
24.25	17,0	
23.64	1-,1	
23.33	27,1	
21.84	27,0	
21.01	0.0	
20.21	0,0	p(1

The largest splitting between the P-waves obtained with the chiral NN+NNN interaction

New developments: NCSM with continuum

NCSM.

 $\left|\Psi_{A}^{J^{\pi}T}\right\rangle = \sum_{Ni} c_{Ni} \left|ANiJ^{\pi}T\right\rangle$

New developments: NCSM with continuum

New developments: NCSM with continuum

RIUMF Building blocks of the NCSMC equations

RIUMF

n-⁴He & *p*-⁴He scattering within NCSMC

Study of the convergence with respect to the # of ⁴He low-lying NCSM states

Experimental low-lying states of the A=5 nucleon systems.

 λ =2.0 fm⁻¹ and 8 low-lying NCSM states of ⁵He.

RIUMF

NCSM/RGM calculations of transfer reactions

$$\int dr r^{2} \left[\begin{pmatrix} \mathbf{r} \\ \mathbf{n} \\ \mathbf{n}$$

Straightforward to couple different mass partitions in the NCSM/RGM formalism

Applications to (d,p) and (d,n) reactions Example: ³He(d,p)⁴He

Work in progress: ⁷Li(d,p)⁸Li & ⁸Li(d,p)⁹Li Technical issue: Calculation of kernels with three-body densities for systems with A>5

Ab Initio Many-Body Calculations of the ${}^{3}H(d, n){}^{4}He$ and ${}^{3}He(d, p){}^{4}He$ Fusion Reactions

Petr Navrátil^{1,2} and Sofia Quaglioni²

Solar *p-p* chain

Structure of the ⁸B ground state

- NCSM/RGM p-⁷Be calculation
 - five lowest ⁷Be states: 3/2⁻, 1/2⁻, 7/2⁻, 5/2⁻₁, 5/2⁻₂
 - Soft NN SRG-N³LO with λ = 1.86 fm⁻¹
- ⁸B 2⁺ g.s. bound by 136 keV (Expt 137 keV)
 - Large *P*-wave 5/2⁻₂ component

p

⁷Be

p-⁷Be scattering

⁷Be(*p*,γ)⁸B radiative capture

Petr Navrátil^{a,b,*}, Robert Roth^c, Sofia Quaglioni^b

³He-⁴He and ³H-⁴He scattering

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.1 fm⁻¹) ³He, ³H, ⁴He ground state, 8(π -) + 8(π +) eigenstates of ⁷Be and ⁷Li Preliminary: N_{max}=10, hΩ=20 MeV E_{th}(⁷Be)=-1.32 MeV (Expt. -1.59 MeV) E_{th}(⁷Li) = -2.20 MeV (Expt. -2.47 MeV)

Goal: Calculations of ³He(⁴He,γ)⁷Be & ³H(⁴He,γ)⁷Li capture

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.1 fm⁻¹) ³He, ³H, ⁴He ground state, 8(π -) + 8(π +) eigenstates of ⁷Be and ⁷Li Preliminary: N_{max}=10, hΩ=20 MeV E_{th}(⁷Be)=-1.32 MeV (Expt. -1.59 MeV) E_{th}(⁷Li) = -2.20 MeV (Expt. -2.47 MeV)

Goal: Calculations of ³He(⁴He,γ)⁷Be & ³H(⁴He,γ)⁷Li capture

NCSM with continuum: ⁷He \leftrightarrow ⁶He+*n*

TRIUMF

p+¹⁰C scattering: structure of ¹¹N resonances

- Limited information about the structure of proton rich ¹¹N – mirror nucleus of ¹¹Be halo nucleus
- Incomplete knowledge of ¹⁰C unbound excited states
- Importance of 3N force effects and continuum

32

¹⁰C(p,p) @ IRIS with solid H₂ target

- New experiment at ISAC TRIUMF with reaccelerated ¹⁰C
 - The first ever ¹⁰C beam at TRIUMF
 - Angular distributions measured at $E_{\rm CM}$ ~ 4.1 MeV and 4.4 MeV
 - Data analysis under way

p+¹⁰C scattering: structure of ¹¹N resonances

🜔 + 🚰 🗲

 $(3/2^{-})$

34

NCSMC calculations including chiral 3N

 $- p^{-10}C + {}^{11}N$

TRIUMF

- ¹⁰C: 0⁺, 2⁺, 2⁺ NCSM eigenstates
- ¹¹N: 6 π = -1 and 3 π = +1 NCSM eigenstates
- N_{max} = 7, N_{max} =9 under way

With the 3N the ²P_{1/2} and ²P_{3/2} resonances broader and shifted to higher energy in a better agreement with experiment

RIUMF p+¹⁰C scattering: Elastic differential cross section

Significant difference in angular distributions in the experimentally explored energy range due to the shift of the ${}^{2}P_{3/2}$ resonance

¹⁰C+p

35

ETRIUMF

¹⁰C(p,p')¹⁰C(2⁺₁) scattering: Differential cross section

Significant difference in the shape of the inelastic differential g.s. to 2^+_1 cross section around $E_{kin} \sim 5$ MeV The shape determined by an interference of 5/2⁺ and 3/2⁻ resonances

NCSM/RGM for three-body clusters: Structure of ⁶He

RIUMF

NCSM/RGM for three-body clusters: Structure of ⁶He

Conclusions and Outlook

- *Ab initio* calculations of nuclear structure and reactions is a dynamic field with significant advances
- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM = NCSMC
 - Inclusion of three-nucleon interactions in reaction calculations for A>5 systems
 - Extension to three-body clusters ($^{6}\text{He} \sim {}^{4}\text{He}+n+n$)
 - Applications to capture reactions important for astrophysics

• Outlook:

- Extension to composite projectiles (deuteron, ³H, ³He)
- Transfer reactions
- Bremsstrahlung
- Alpha-clustering (⁴He projectile)
 - ¹²C and Hoyle state: ⁸Be+⁴He
 - ¹⁶O: ¹²C+⁴He

NCSMC and NCSM/RGM collaborators

Sofia Quaglioni (LLNL)

- Francesco Raimondi, Jeremy Dohet-Eraly, Angelo Calci (TRIUMF)
- Joachim Langhammer, Robert Roth (TU Darmstadt)
- Carolina Romero-Redondo, Michael Kruse (LLNL)
- Guillaume Hupin (Notre Dame)
- Simone Baroni (ULB)
- Wataru Horiuchi (Hokkaido)