

First Identification of Collective Band Structure in Odd-odd ¹⁶⁶Re

Hongjie Li

B. Cederwall, T. Bäck, M. Doncel, C. Qi Royal Institute of Technology, Stockholm, Sweden

> Z. G. Xiao, S. J. Zhu Tsinghua University, Beijing, China

JUROGAM/GREAT Collaboration

Outline of the Talk

Spectroscopy at the Proton Drip Line Experimental Setup Preliminary Results Conclusion

Proton drip line

courtesy of RD Page, LISA presentation

Identified collective bands

									Comp	ound
78	Pt162	Pt163	Pt164	Pt165	Pt166	Pt167	Pt168	Pt169	Pt170	
77	lr161	Ir162	Ir163	Ir164	Ir165	Ir166	lr167	Ir168	lr169	1р
76	Os160	Os161	Os162	Os163	Os164	Os165	Os166	Os167	Os168	2р
75	Re159	Re160	Re161	Re162	Re163	Re164	Re165	Re166	Re167	Зр
74	W158	W159	W160	W161	W162	W163	W164	W165	W166	4р
73	Ta157	Ta158	Ta159	Ta160	Ta161	Ta162	Ta163	Ta164	Ta165	5р
72	Hf156	Hf157	Hf158	Hf159	Hf160	Hf161	Hf162	Hf163	Hf164	6р
71	Lu155	Lu156	Lu157	Lu158	Lu159	Lu160	Lu161	Lu162	Lu163	7р
	84		86		88		90		92	1

Experimental Setup

- Reaction: ⁹²Mo(⁷⁸Kr, 3pn)¹⁶⁶Re
- > E_{beam}=380 MeV
- > Accelerator: K130 cyclotron at the University of Jyväskylä
- Target: 0.6-mg/cm² ⁹²Mo with 1-mg/cm² Ta support
- DPUNS Plunger: 1-mg/cm² Mg degrader with the distances of 5, 100, 200, 500, 1000, 2000, 3000, 5000, 8000um
- Setup: JUROGAM II(24 clovers + 15 tapered phase I) Germanium RITU(Recoil Ion Transport Unit) gas-filled recoil seperator GREAT(Gamma Recoil Electron Alpha Tagging) Spectrometer MWPC Si PIN diode detectors DSSD: 120x + 80y 3 clovers + planar(24x + 12y) in FP
- > Total photopeak efficiency: 4.2% at 1.3 MeV

Identification of ¹⁶⁶Re Total projection in the Cube

Identification of ¹⁶⁶Re The Known Excited States

FIG. 8. Tentative level structure of 166 Re deduced from the α -decay study of 170 Ir.

B. Hadinia, et al, PRC 76, 044312 (2007)

FIG. 8. Tentative level structure of 166 Re deduced from the α -decay study of 170 Ir.

 (14^{+})

 (12^{+})

 (10^{+})

 (8^+)

Level scheme of ¹⁶⁶Re

\Proton single particle levels : Universal Woods–Saxon potential

\Neutron single particle levels : Universal Woods–Saxon potential

 $B(M1)/B(E2) [(\mu_N/eb)^2]$

P: npps; N: ppps

P: npns; N: npps

ħ ω =0.2 MeV

P: ppps; N: ppps

Harris Parameters: Band 1 $J_0=13 h^2 MeV^{-1}$, $J_1=64 h^4 MeV^{-3}$

Band 2 $J_0=4 \hbar^2 MeV^{-1}$, $J_1=85 \hbar^4 MeV^{-3}$ $\label{eq:scalar} $$ \eqref{eq:scalar} Voids-Saxon potential $$ N=91, BETA2=0.168, BETA4=0.009, GAMMA=-1.6\^{\circ}, IMODEL=2, DELTA0=0.000 $$ (\arrow, \arrow, \arrow,$

Fig. 4. Behaviour of signature splitting S(I) versus I for band 1 and the $\pi h_{11/2} \otimes i_{13/2}$ bands in adjacent odd-odd nuclei. The arrow indicates the signature inversion spin.

FIG. 9. A compilation of signature inversion for the $\pi h_{9/2}$ $\otimes \nu i_{13/2}$ bands in $A=160 \sim 180$ mass region. The filled (opened) symbols correspond to the levels with favored signature $\alpha_f = 1$ (unfavored signature $\alpha_{uf}=0$). The arrows indicate the signature crossing spins. The data sources are ¹⁸²Au [11], ¹⁷⁶Ir [10,49], ¹⁷⁸Ir [5,50], ¹⁸⁰Ir [32], ¹⁷²Re [this] work], ¹⁷⁴Re [24], ¹⁷⁶Re [4], ¹⁷⁸Re [4,25], ¹⁷⁰Ta [41,44], ¹⁷²Ta [51], ¹⁷⁴Ta [13], ¹⁷⁶Ta [34], ¹⁶⁶Lu [52], ¹⁶⁸Lu [53,54], ¹⁷⁰Lu [43], ^{162,164}Tm [13], ¹⁶⁶Tm [55].

Y. H. Zhang et al, PRC 68, 054313 (2003)

Conclusion

- First identification of two collective bands in odd-odd ¹⁶⁶Re
- The configurations for the two bands have been tentatively assigned and the deformation has been predicted by TRS calculations
- The backbending for band (1) may originate from the i_{13/2} BC crossing
- Signature splitting observed in bands (1) and (2) in agreement with TRS calc. (small triaxial deformation)
 Signature inversion observed in band (2). This phenomenon lacks consistent theoretical interpretation!!!

Thank you !