Experiments with relativistic radioactive beams
The dipole response of neutron-rich nuclei investigated at R3B

Thomas Aumann

September 20th 2014
International School on Nuclear Physics 36th course
Nuclei in the Laboratory and in the Cosmos
Erice-Sicily

Supported by the BMBF under contract no 05P12RDFN8
Reactions with neutron-proton asymmetric nuclei

R3B
Reactions with Relativistic Radioactive Beams

rp-process
r-process

stable nuclei
N/Z = 1 - 1.5

drip-line nuclei
N/Z = 2 - 3

technetium nuclei
Reactions with neutron-proton asymmetric nuclei

A laboratory for studying nuclear properties as a function of isospin and density:

- Nuclear Structure of exotic nuclei
- Neutron-Proton asymmetric matter
- Nuclear Astrophysics

rp-process

r-process

Neutron-Proton asymmetric matter

Dip-line nuclei

N/Z = 2 - 3

Exotic nuclei

Stable nuclei

N/Z = 1 - 1.5

\[E_{nucleus} \]
Reactions with neutron-proton asymmetric nuclei

A laboratory for studying nuclear properties as a function of isospin and density:

- Nuclear Structure of exotic nuclei
- Neutron-Proton asymmetric matter
- Nuclear Astrophysics
- Neutron-Proton asymmetric nuclei
 - Dipole response of N-Z asymmetric nuclei
 - Redistribution of collective strength (Pygmy and Giant Resonances)
 - Nucleosynthesis processes
 - Symmetry energy (neutron pressure)

Symmetry energy (neutron pressure)

Neutron-Proton asymmetric nuclei
RQTBA dipole transition densities in ^{68}Ni at 10.3 MeV

Theory: RQTBA-2

Elena Litvinova (GSI, WMU&MSU)
Review

Experimental studies of the Pygmy Dipole Resonance

D. Savran a,b,*, T. Aumann c,d, A. Zilges e

Progress in Particle and Nuclear Physics 70 (2013) 210–245
Systematics of Pygmy dipole strength?

Review

Experimental studies of the Pygmy Dipole Resonance

D. Savran a,b,*, T. Aumann c,d, A. Zilges e

Progress in Particle and Nuclear Physics 70 (2013) 210–245
Systematics of Pygmy dipole strength?

\[\Delta_{CCF} = \frac{(S_{2p} - S_{2n})}{2 + E_C} \text{[MeV]} \]

Review

Experimental studies of the Pygmy Dipole Resonance

D. Savrana,b,*, T. Aumannc,d, A. Zilgese

Progress in Particle and Nuclear Physics 70 (2013) 210–245
Next-generation experiments – Goals:
- extraction of full dipole strength function (below and above threshold, extracting E2 contribution, γ (-cascade) and neutron channels)
- development of strength with neutron excess
- relation to symmetry energy
- characteristic of low-lying strength (isospin structure, decay properties)

See talk today by Andrea Horvat
Symmetry energy $S_2(\rho)$ and neutron skin in ^{208}Pb

$$E(\rho, \alpha) = E(\rho, 0) + S_2(\rho) \alpha^2 + O(\alpha^4), \quad \alpha = \frac{N-Z}{A}$$

$$S_2(\rho) = \frac{1}{2} \left. \frac{\partial^2 E(\rho, \alpha)}{\partial \alpha^2} \right|_{\alpha=0} =$$

$$= a_4 + \frac{p_0}{\rho_0^2} (\rho - \rho_0) + \frac{\Delta K_0}{18 \rho_0^2} (\rho - \rho_0)^2 + ...$$

Alex Brown,
PRL 85 (2000) 5296

R.J.Furnstahl
NPA 706 (2002) 85-110

- strong linear correlation between neutron skin thickness and parameters a_4, p_0
Symmetry energy and dipole response

neutron-skin thickness
dipole response
density dependence of
symmetry energy
properties of
neutron-rich matter

\[\text{n-skin from Pygmy strength} \]
\[\text{n-skin from polarizability} \]

\[S. \, \text{Typel and B.A. Brown, Phys. Rev. C 64 (2001) 027302} \]

\[J. \, \text{Piekarewicz, PRC 83, 034319 (2011)} \]

A. Klimkiewicz et al., PRC 76 (2007) 051603(R)
A. Carbone et al., PRC 81 (2010) 041301(R)
Electromagnetic excitation at high energies

High velocities \(v/c \approx 0.6-0.9 \)

\(\Rightarrow \) High-frequency Fourier components

\[E_{\gamma,\text{max}} \approx 25 \text{ MeV (at 1 GeV/u)} \]

Absorption of ‘virtual Photons’

\[\sigma_{\text{elm}} \sim Z^2 \]

Determination of ‘photon energy’ (excitation energy) via a kinematically complete measurement of the momenta of all outgoing particles (invariant mass)
Production of fast exotic nuclei

- Stable beams from SIS, fragmentation on Be target or in-flight fission
- Selection of radioactive beams in Fragment Separator (FRS)

\[
\begin{align*}
A &= \frac{e \cdot B\rho}{Z} \\
Z &= \frac{m_u c \beta\gamma}
\end{align*}
\]
The LAND reaction setup @GSI

Mixed beam

Charged fragments

ToF, ΔE

tracking $\rightarrow B\rho \sim A/Q\beta\gamma$

Neutrons

LAN D

ToF, x, y, z

~ 12 m

Photons

ALADIN

large-acceptance dipole

Beam

projectile tracking

Crystal Ball

and **Target**

Excitation energy E^* from kinematically complete measurement of all outgoing particles:

$$E^* = \left(\sqrt{\sum_i m_i^2} + \sum_{i \neq j} m_i m_j \gamma_i \gamma_j (1 - \beta_i \beta_j \cos \theta_{ij}) - m_{proj} \right) c^2 + E_\gamma$$
Analysis of 68Ni: decay after Coulomb excitation

Neutron kinetic energy

- 68Ni(γ^*,1n) channel
- 68Ni(γ^*,2n) channel

- Consistent fit taking into account:
 1. Invariant mass, but also information of subsets like $E_{\text{kin}}(n)$, $E_{\gamma\text{sum}}$ etc.
 2. Detailed knowledge about detector response function

- $R_{\text{direct}} = 24(4)\%$

Gamma sum energy

![Image](image_url)

Analysis:
- Dominic Rossi
- PhD Thesis
- Univ. Mainz
- PostDoc GSI
- Now MSU
Dipole strength distribution of 68Ni

Simultaneous fit of spectra with 8 individual energy bins as free fit parameters: „deconvolution“

<table>
<thead>
<tr>
<th></th>
<th>This work</th>
<th>Lit.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDR</td>
<td>E_m [MeV]</td>
<td>17.1(2)</td>
<td>17.84</td>
</tr>
<tr>
<td></td>
<td>Γ [MeV]</td>
<td>6.1(5)</td>
<td>5.69</td>
</tr>
<tr>
<td></td>
<td>S_{EWSR} [%]</td>
<td>98(7)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>σ [MeV]</td>
<td>0.51(13)</td>
<td>< 1</td>
</tr>
<tr>
<td></td>
<td>S_{EWSR} [%]</td>
<td>2.8(5)</td>
<td>5.0(1.5)</td>
</tr>
</tbody>
</table>

Direct gamma-decay branching ratio
$\Gamma_0/\Gamma = 7(2)\%$

O. Wieland et al., PRL 102, 092502 (2009)
D. Rossi et al., PRL 111 (2013) 242503
Polarizability and neutron skin

\[\alpha_D = \frac{\hbar c}{2\pi^2} \int_0^\infty \frac{\sigma(E)}{E^2} dE \]

Neutron-skin thickness
\[\Delta R_{n,p} = 0.175(21) \text{ fm} \]

Theoretical calculations from
J. Piekarewicz, PRC 83, 034319 (2011)

D. Rossi et al., PRL 111 (2013) 242503
Neutron skin in 208Pb from different methods

But:
X. Roca-Maza et al., PRC
88 (2013) 024316
Neutron skin in ^{208}Pb from different methods

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.

The parity-violating asymmetry in the elastic scattering of ultrarelativistic elastically scattered electrons with positive and negative parity-violating asymmetry is defined as the relative difference $\Delta A_{\text{pol}} = A_{\text{pol}}(+) - A_{\text{pol}}(-)$.
Clustering at surface changes neutron-skin thickness

-> relation slope symmetry energy – n-skin

-> experiment to test a preformation in heavy nuclei (p,pα) at RCNP (Aumann, Uesaka, Typel et al.) with RIB: SAMURAI, R3B

Measurement of the dipole polarizability of the unstable neutron-rich nucleus 68Ni

D. M. Rossi,1,2,* P. Adrich,1 F. Aksouh,1,† H. Alvarez-Pol,3 T. Aumann,4,1,‡ J. Benlliure,3 M. Böhmer,5 K. Boretzky,1 E. Casarejos,6 M. Chartier,7 A. Chatillon,1 D. Cortina-Gil,3 U. Datta Pramanik,8 H. Emling,1 O. Ershova,9 B. Fernandez-Domínguez,3,7 H. Geissel,1 M. Gorska,1 M. Heil,1 H. T. Johansson,10,1 A. Junghans,11 A. Kelic-Heil,1 O. Kiselev,1,2 A. Klimkiewicz,1,12 J. V. Kratz,2 R. Krücken,5 N. Kurz,1 M. Labiche,13,14 T. Le Bleis,1,9,15 R. Lemmon,14 Yu. A. Litvinov,1 K. Mahata,1,16 P. Maiерbeck,5 A. Movsesyan,4 T. Nilsson,10 C. Nociforo,1 R. Palit,17 S. Paschalis,4,7 R. Plag,9,1 R. Reifarth,9,1 D. Savran,18,19 H. Scheit,4 H. Simon,1 K. Sümmerer,1 A. Wagner,11 W. Waluś,12 H. Weick,1 and M. Winkler1

1GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
2Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany
3University of Santiago de Compostela, E-15705 Santiago de Compostela, Spain
4Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
5Physik-Department E12, Technische Universität München, D-85748 Garching, Germany
6University of Vigo, E-36310 Vigo, Spain
7University of Liverpool, Liverpool L69 7ZE, United Kingdom
8Saha Institute of Nuclear Physics, Kolkata 700-064, India
9Institut für Angewandte Physik, Goethe Universität, D-60438 Frankfurt am Main, Germany
10Chalmers University of Technology, SE-41296 Göteborg, Sweden
11Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden, Germany
12Jagiellonian University, PL-30-059 Krakow, Poland
13University of the West of Scotland, Paisley PA1 2BE, United Kingdom
14STFC Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
15Institut Pluridisciplinaire Hubert Curien, F-67037 Strasbourg, France
16Bhabha Atomic Research Centre, Mumbai 400-085, India
17Tata Institute of Fundamental Research, Mumbai 400-005, India
18ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
19Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany
Summary

• Dipole response of n-rich nuclei – Pygmy Resonance
 - Low-lying dipole strength observed in n-rich nuclei, ‘proton-Pygmy’ in ^{32}Ar
 - many open questions – next-generation experimental program planned at GSI, RIKEN, SDALINAC, HIγS, Osaka, …
 - systematics, strength and position as a function of N-Z (and mass)
 - isospin character (isoscalar dipole)
 - decay properties
 - relation to nuclear-matter properties
 - relation to observed low-lying strength for stable nuclei
 - extraction of quadrupole strength

• Dipole response of ^{68}Ni
 - 25(2)% non-statistical decay
 - PDR: 2.8(5)% EWSR, 7(2)% direct gamma decay
 - Dipole polarizability extracted for the first time for a radioactive nucleus

This opens the possibility for systematic studies as a function of N-Z which will enable to provide tight constraints on neutron skins and the density dependence of the symmetry energy