Spectral Measurement of Antineutrino Oscillation Amplitude and Frequency at Daya Bay

Reactor Antineutrino Oscillation

A Decade of Progress

The neutrino mixing matrix only recently measured.

$$U_{if} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \left\{ \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \right\} \left\{ \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha,i} |\nu_{i}\rangle \left\{ \begin{array}{c} \theta_{23} \approx 45^{\circ} \\ \text{Atmospheric v} \\ \text{Accelerator v} \end{array} \right\} \left\{ \begin{array}{c} \theta_{13} \approx 9^{\circ} \\ \text{Short-Baseline Reactor v} \\ \text{Accelerator v} \end{array} \right\} \left\{ \begin{array}{c} \theta_{12} \approx 35^{\circ} \\ \text{Solar v} \\ \text{Long-Baseline Reactor v} \end{array} \right\}$$

Searching for θ_{13}

Three-flavor model predicts reactor \overline{v}_{e} oscillation at ~1.8km

A Relative Measurement

The Daya Bay Collaboration

Asia (21)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan Univ.,

Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

Europe (2)

Charles University, JINR Dubna

North America (17)

Brookhaven Natl Lab, CalTech, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer Polytechnic, Siena College, UC Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William & Mary, Yale

~230 people from 40 institutions

9/17/13

Daya Baj

The Daya Bay Experiment

Mountains shield detectors from cosmic ray background

Daya Bay NPP

2 2.9 GW_{th}

Ling Ao I NPP 2 2.9 GW_{th}

Ling Ao II NPP 2 2.9 GW_{th}

Entrance to Daya Bay experiment tunnels

Among the top 5 most powerful reactor complexes in the world, 6 cores produce 17.4 GWth power, 35 × 10²⁰ neutrinos per second Spectral Oscillation Measurement at Daya Bay: D. Dwyer 7

Experiment Layout

Reactor Experiments

Baseline Optimization

Atmospheric and accelerator v oscillation $\Delta m^2_{\mu\mu}$ suggest to search at ~1.8 km.

Go strong, big and deep!

	Reactor [GW _{th}]	Target [tons]	Depth [m.w.e]
Double Chooz	8.6	16 (2 × 8)	300, 120 (far, near)
RENO	16.5	32 (2 × 16)	450, 120
Daya Bay	17.4	160 (8 × 20)	860, 250
	Large Si	gnal	Low Background

Reactor Antineutrinos

Nuclear fission releases: ~6 antineutrinos/fission Standard electric power reactor: ~10²⁰ fissions/second

Detection Method

Inverse β-decay (IBD):

Prompt positron:

Carries antineutrino energy... $E_{e^+} \approx E_v - 0.8 \text{ MeV}$

Delayed neutron capture:

Efficiently tags antineutrino signal

Prompt + Delayed coincidence provides distinctive signature

Antineutrino Detector (AD) Design

8 functionally identical detectors reduce systematic uncertainties

	3 zone cylindrical vessels		
	Liquid	Mass	Function
Inner acrylic	Gd-doped liquid scint.	20 t	Antineutrino target
Outer acrylic	Liquid scintillator	20 t	Gamma catcher
Stainless steel	Mineral oil	40 t	Radiation shielding

192 8 inch PMTs in each detector

Top and bottom reflectors increase light yield and flatten detector response

Automated Calibration System

3 Automatic calibration 'robots' (ACUs) on each detector

Three axes: center, edge of γ : ¹³⁷Cs (0.662 MeV), ⁵⁴ target, middle of gamma catcher n: ²⁴¹Am-⁹Be, ²³⁹Pu-¹³C

Top view

3 sources in each robot, including:

- 10 Hz 68 Ge (0 KE e⁺ = 2×0.511 MeV γ's)
- 0.75 Hz ²⁴¹Am-¹³C neutron source (3.5 MeV n without γ)
 - + 100 Hz ⁶⁰Co gamma source (1.173+1.332 MeV γ)
- LED diffuser ball (500 Hz) for time calibration

Temporary special calibration sources:

γ: ¹³⁷Cs (0.662 MeV), ⁵⁴Mn (0.835 MeV), ⁴⁰K (1.461 MeV) n: ²⁴¹Am-⁹Be, ²³⁹Pu-¹³C

Muon Detector System

Dual tagging systems: 2.5 meter thick two-section water shield and RPCs

Interior of Antineutrino Detector

Installed Underground

Analyzed Data Sets

Two detector comparison [1202.6181]

- 90 days of data, Daya Bay near only
- NIM A 685 (2012), 78-97

First oscillation analysis [1203:1669]

- 55 days of data, 6 ADs near+far
- PRL 108 (2012), 171803

Improved oscillation analysis [1210.6327]

- 139 days of data, 6 ADs near+far
- CP C **37** (2013), 011001

Spectral Analysis

- 217 days, complete 6 AD period
- 55% more statistics than CPC result

Initial Results

Based on 55 days of data with 6 ADs, discovered disappearance of reactor \overline{v}_{e} at short baseline in March 2012. [PRL **108**, 171803]

Obtained the most precise value of θ_{13} in Jun. 2012:

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \pm 0.005$ [CPC 37, 011001]

Rate vs. Spectral Information

Advantages: Fewer systematic uncertainties Disadvantages: Less sensitive, Unable to constrain Δm_{ee}^2

$$\frac{N_{far}}{N_{near}} = \frac{N_{protons,far}}{N_{protons,near}} \frac{L_{near}^2}{L_{far}^2} \frac{\epsilon_{far}}{\epsilon_{near}} \frac{\int_{E_{min}}^{E_{max}} dE \, P_{surv}(E, L_{far}; \theta_{13}, \Delta m_{ee}^2) \, \sigma(E) \, \Phi(E)}{\int_{Emin}^{Emax} dE \, P_{surv}(E, L_{near}; \theta_{13}, \Delta m_{ee}^2) \, \sigma(E) \, \Phi(E)}$$

9/17/13

Rate vs. Spectral Information

Advantages: Each energy bin is an independent oscillation measurement, Δm_{ee}^2 Disadvantages: Requires detailed understanding of detector energy response.

$$\frac{\frac{dN_{far}}{dE}}{\frac{dN_{near}}{dE}} = \frac{N_{protons,far}}{N_{protons,near}} \frac{L_{near}^2}{L_{far}^2} \frac{\epsilon_{far}}{\epsilon_{near}} \frac{P_{surv}(E, L_{far}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}{P_{surv}(E, L_{near}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}$$

Wading into the thick...

Energy Scale Systematics

Relative shift in energy between detectors can bias oscillation

Requires careful detector calibration

Calibration: Performance

Obtain a stable and consistent Energy Response

After calibration, Daya Bay detectors are **stable to ~0.1%**, with **relative uncertainty of 0.35%**.

Energy Scale Systematics

Absolute shift in energy common to detectors can bias oscillation

Requires detailed translation between true and detected $\overline{\mathbf{v}}_{e}$ energy

Modeling the Energy Response

Model maps true energy E_{true} to reconstructed kinetic energy E_{rec}

- Minimal impact on oscillation measurement
- Crucial for measurement of reactor spectra

Modeling the Energy Response

Detector response to γ and e^- used to predict response to e^+

Out of the Swamp...

Antineutrino (IBD) Selection

Antineutrino interactions cleanly separated from backgrounds

- Reject spontaneous PMT light emission ("flashers")
- 2 Prompt positron:
 - 0.7 MeV < Ep < 12 MeV
- ③ Delayed neutron:
 - 6.0 MeV < Ed < 12 MeV
- (4) Neutron capture time:
 - 1 μs < t < 200 μs
- 5 Muon veto:
 - Water pool muon (>12 hit PMTs): Reject [-2µs; 600µs]
 - AD muon (>3000 photoelectrons): Reject [-2 μs; 1400μs]
 - AD shower muon (>3×10⁵ p.e.): Reject [-2 μs; 0.4s]

6 Multiplicity:

- No additional prompt-like signal 400µs before delayed neutron
- No additional delayed-like signal 200µs after delayed neutron

Signal and Background Summary

AD 6
13731
0.9566
87±0.01
04±0.02
$.20 \pm 0.66$

* Background and IBD rates were corrected for the efficiency of the muon veto and multiplicity cuts $\epsilon_{\mu} \cdot \epsilon_{m}$

Collected more than 300k antineutrino interactions

- Consistent rates for side-by-side detectors
- Uncertainties still dominated by statistics

Uncertainty Summary

Daya Bay

Antineutrino Rate vs. Time

Detected rate strongly correlated with reactor flux expectations

Daya Bal

Rate-Only Oscillation Results

 $\sin^2 2\theta_{13} = 0.089 \pm 0.009$

- Uncertainty reduced by statistics of complete 6 AD data period
- Standard approach: $\chi^{2/N}_{DOF} = 0.48/4$
- $|\Delta m^2_{ee}|$ constrained by MINOS result for $|\Delta m^2_{\mu\mu}|$
- Far vs. near relative measurement: absolute rate not constrained
- Consistent results from independent analyses, different reactor flux models

Prompt IBD Spectra

A Comment on Δm^2

Short-baseline reactor experiments insensitive to neutrino mass hierarchy.

Cannot discriminate two frequencies contributing to oscillation Δm^2_{31} , Δm^2_{32} One effective oscillation frequency is measured:

$$P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}} = 1 - \frac{\sin^{2} 2\theta_{13} \sin^{2} \left(\Delta m_{ee}^{2} \frac{L}{4E}\right)}{\sin^{2} \left(\Delta m_{ee}^{2} \frac{L}{4E}\right)} - \frac{\sin^{2} 2\theta_{12} \cos^{4} \theta_{13} \sin^{2} \left(\Delta m_{21}^{2} \frac{L}{4E}\right)}{\sin^{2} \left(\Delta m_{sol}^{2} \frac{L}{4E}\right)} = \frac{\cos^{2} \theta_{12} \sin^{2} \left(\Delta m_{31}^{2} \frac{L}{4E}\right)}{+\sin^{2} \theta_{12} \sin^{2} \left(\Delta m_{32}^{2} \frac{L}{4E}\right)} + \frac{\sin^{2} \theta_{12} \sin^{2} \left(\Delta m_{32}^{2} \frac{L}{4E}\right)}{\sin^{2} \left(\Delta m_{atm}^{2} \frac{L}{4E}\right)}$$

Result can be easily related to actual mass splitting, based on true hierarchy:

$$\left|\Delta m_{ee}^2\right| \simeq \left|\Delta m_{32}^2\right| \pm 5 \times 10^{-5} \mathrm{eV}^2 \quad \begin{array}{c} \text{+: Normal Hierarchy} \\ \text{-: Inverted Hierarchy} \end{array}$$

Hierarchy discrimination requires ~1% precision on both Δm^2_{ee} and $\Delta m^2_{\mu\mu}$

Rate+Spectra Oscillation Results

Global Comparison of θ_{13} Measurements

Daya Bay Onsite Progress

Final two detectors installed, operating since Oct. 2012.

Full 4π detector calibration in Sep. 2012.

Sensitivity Projection

Over 1 million antineutrinos detected as of now!

Precision will soon be dominated by systematic uncertainties

Daya Bay Future

Improved precision on oscillation parameters

- Constrains non-standard oscillation models
- Improves reach of future neutrino experiments

Measure absolute reactor neutrino flux

- Explore the 'reactor antineutrino anomaly'
- Precise spectrum probes reactor models

Cosmogenic Backgrounds

- Measurement of cosmogenic production vs. depth

Supernova Neutrinos

Daya Ba

Summary

The Daya Bay Experiment has reported the first direct measurement of the short-distance electron antineutrino oscillation frequency:

$$\left|\Delta m_{ee}^2\right| = 2.59^{+0.19}_{-0.20} \times 10^{-3} \text{eV}^2$$

The measurement has also produced the most precise estimate of the mixing angle:

$$\sin^2(2\theta_{13}) = 0.090^{+0.008}_{-0.009}$$

Expect more from Daya Bay:

- Measurement of the absolute reactor flux, addressing the reactor anomaly
- Constraints on non-standard neutrino models
- Significantly increased precision (all 8 detectors, >2 years of operation)

