Cosmic Neutrino Searches with IceCube

Aya Ishihara Chiba University

International School of Nuclear Physics 35th Course Neutrino Physics: Present and Future Erice Sicily September 21, 2013

Why Cosmic Neutrinos?

- Cosmic-rays (proton or nuclei) are charged particles of which trajectories are bend by unknown magnetic field
- Gamma-rays loose their energy via interaction with cosmic-microwave background
 - typically 100k light years (diameter of our galaxy) at ~PeV (10¹⁵eV)
 - gamma-rays are produced by both electrons and hadrons. hard to distinguish

Extremely-high energy emission in the Universe

3

Extremely-high energy emission in the Universe

Extremely-high energy emission in the Universe

Extremely-high energy neutrinos in the Universe

What the EHE neutrinos tells about the Universe

cosmogenic v induced by the off-source (<50Mpc) interactions of cosmicray and CMB photons via GZK (Greisen-Zatsepin-Kuzmin) mechanism

What the EHE neutrinos tells about the Universe not accessible otherwise

- Location of the cosmic-ray sources
- Cosmological evolution of the cosmic-ray sources; intensity reflects the contributions from the sources in a high redshift region
- Cosmic-ray spectra at sources: the highest energy of the cosmic-rays E_{max} and spectral slope
- Composition of the cosmicrays

Plus

Particle physics beyond the energies accelerators can reach

Cosmological neutrino flux shape carry a lot of information about the cosmic-ray origin

The Largest Neutrino Detector in the world: The IceCube Detector

IceCube Construction and Runs

	Strings	Data	Livetime	trigger rate	HE v rate
		(year)		(Hz)	(per day)
	IC40	2008-09	375 days	1100	~40/ day
T I · _	IC59	2009-10	350 days	1900	~70/ day
Inis	IC79	2010-11	320 days	2250	~100/day
talk	IC86-I	2011- 2012	360 days	2700	~120/day
	IC86-II	2012-2013	360 days	2700	~120/day
	IC86-III	2013-	TBD	2700	~120/day

Very stable full operation since May 2011

The IceCube LAB

Making holes

1

La:

60 photomultipliers/string Installation time: 10h/string

Detection Principle

Dark and transparent material

 μ , τ or cascades

Cherenkov light

An array of photomultiplier tubes

IceCube event signatures

τ

e

hadronic shower With 59 strings 2009

~100TeV up-going muon track event

With 40 strings, 2008 Dec

W.

high energy cosmic-ray induced atmospheric muon built built is a sevent

'Brightness' is the signature for UHE neutrinos

below ~PeV, upwardgoing tracks and cascade-like topology is important

$$-\left\langle\frac{dE}{dX}\right\rangle = \alpha + \beta E$$

NPE is the number of photoelectron signals measured by IceCube detector

from MC simulation

Digital Optical Module

- PMT: 10 inch Hamamatsu
- Power consumption: 3 W
- Digitize at 300 MHz for 400 ns with custom chip
- 40 MHz for 6.4 µs with fast ADC
- Flasherboard with 12 LEDs
- Local HV

Dynamic range 500 photoelectron/15ns

Waveforms, times digitized in each DOM

Clock stability: $10^{-10} \approx 0.1$ nsec / sec Synchronized to GPS time every ≈ 10 sec Time calibration resolution = 2 nsec

25 cm PMT 33 cm Benthosphere

Absolute Calibration of DOMs

QE × CE Absolute calibration

Reflectivity : $14.5\% \pm 0.73$ Transmission : $50.7\% \pm 2.54$

Nuclear Instruments and Methods A, 618 (2010)

In-situ Absolute Calibration

Calibrated light source: Standard Candle

- in-situ calibrated N₂ pulsed laser
- Ight wavelength 337 nm
- at 100% intensity generates 4x10¹² photons per pulse emitted at 41°
- output adjustable between 0.5% ~ 100%

Waveform examples from spe to 10,000 pe

25 cm PMT

Background

Atmospheric muons (downward going, more energetic and dominant in number) and Atmospheric neutrinos (full angle, less energetic, smaller in rate)

Atmospheric muon background rejection

The Energy–Brightness relation

Brightness and zenith angle distributions

NPE = Integrated charge/PMT gain

Analysis Level NPE vs ZA

IC86

Open the box - Observation of 2 events

Run118545-Event6373366 NPE 6.9928x10⁴ GMT time: 2011/8/8 12:23:18

1.0PeV

Run119316-Event36556705 NPE 9.628x10⁴ GMT time: 2012/1/3 9:34:01

1.1PeV

Extremely high energy neutrino search above PeV

- $v_e:v_u:v_\tau=6:1:2$ at 1PeV, 3:4:2 at 10PeV, 2:5:3 at 100PeV
- 2..8 sigma excess over 0.08^{+0.04}_{-0.06} events of atmospheric BG

Number of photoelectrons: NPE ∝ Visible Energy

Background and systematics

Scale the event with Erice

Aya Ishihara Erice School 2013

Event from Aug-2011

Calibrated ATWD waveforms above and below the highest charged DOM (S53-23)

Starting Event Search (cascade+starting track)

- Followup analysis on the UHE cascade-like events
- Atmospheric muon/neutrino background largely reduced by vetoing events with initial photons in outer layers
- Events with NPE > 6000 (the case for EHE, NPE > 60000), sensitivity extended down to 30TeV

Aya Ishihara Erice School 2013

 Down-going atmospheric neutrinos are also reduced by vetoing atmospheric muon events

Effective Areas Propositional to expected event rates

Area x \mathbf{v} flux x 4π x livetime = event rate

Starting Event NPE Distributions

2010-2012 (2 years)

- 26 new events found(19 cascades, 7 with tracks)
- over background expectation of 12 +/-4 atmospheric muons(6±3) and atmospheric neutrinos(6±2)
- no new events near the PeV region but deviation from background only hypothesis observed

Already observed two events

Extraterrestrial neutrino search with starting events

- Inconsistent with background only model at 3.3σ for 26 events and 4.1σ with 28 events combined (preliminary)
- Event features (reconstructed energy, zenith angle, vertex positions and topology) consistent with background + astrophysical (φ_{astro}∝E⁻²) fluxes
- Best fit results $E^2\phi=3.6x10-8$ [GeV cm-1 s-1 sr-1] with a hard cut off at 1.6PeV
 - Need to be evaluated with adding more statistics soon!

Aya Ishihara Erice School 2013

Summary

- Two year data analysis in search for the neutrinos above PeV and a followup analysis using veto method were performed
- They reject background only hypothesis at 4.1σ
- Expected signal distribution from the observation are consistent with isotropic, flavor 1:1:1, $\varphi \propto E^{-2.2 \sim -2.0}$
- We are studying the different channels, showing consistent results so far
- In a phase transition from discovery to measurement

Energy, declination and topology

Aya Ishihara Erice School 2013

Up-Down Asymmetry

expected Energy vs $\cos \theta$ distributions

Vertex positions

p-values	All 28 Events	21 Cascade Events
Cluster Search	~80%	8%

What causes scattering in the ice?

- In the *shallow ice*, scattering is predominantly caused by air bubbles.
- In the deeper ice, *below 1400 m*, the bubbles have converted to non-scattering air hydrate crystals, so-called clathrates, and scattering is caused by **dust**.
- This dust has four main components: mineral grains, salt, acids, and soot. Scattering is mainly caused by the mineral grain component.

The wavelength dependence of the scattering coefficient is described (in the wavelength range 300-600 nm) by a power law:

This power law was fitted to pulsed data at 4 wavelength for IceCube.

Absorption is caused by dust and the ice itself.

Dust Logger

Since scattering is caused by **dust**. It is important to understand

dust logger data string 21

dust logger data of multiple location

Packago Dimonsions

Flasher on the every DOM

Above a dust layer

Partially in a dust layer

The Ice is very clear Effective scattering length vs Depth

Absorption length vs Depth

Optical Properties

- Combining all the possible information
- These features are included in simulation
- We're always be developing them Nature never tell us a perfect answer but obtained a satisfactory agreement with data!

Checks of non saturated region

Red:data Blue:MC

Comparisons of normalized waveforms in non saturated region (shape = photon timing)

High Energy Veto Method

