Electromagnetic Transition Form Factors of Mesons

Carla Terschlüsen

Department of Physics and Astronomy
Uppsala University

Erice, September 2011
Motivation

Standard vector meson dominance (VMD) fails to describe the data.

Problem in QCD

Running coupling constant in QCD
- high energies: can use perturbation theory
- low energies: cannot use perturbation theory

Possible solution: effective theories
↔ hadrons as relevant degrees of freedom
Effective theories for light mesons

Calculation of hadronic reactions and decays:

- **low-energy region**: Chiral perturbation theory (ChPT)
 - Goldstone bosons (π, K, η) only active degrees of freedom
 - vector mesons are heavy

 \Rightarrow not applicable for energy range of hadronic resonances (ρ, ω, K^*, ϕ)

- energy range of hadronic resonances:

 so far only phenomenologically successful models

Aim: effective field theories for higher energy range
New counting scheme for Goldstone bosons and light vector mesons

- masses of both vector mesons and pseudoscalar mesons are treated as soft, i.e. \(\sim q \)
- decays: all involved momenta are smaller than the mass of the decaying meson, i.e. \(\sim q \)

Possible justification:

other low-lying mesons are dynamically generated from interactions of Goldstone bosons and light vector mesons (hadrogenesis conjecture)
Leading-order Lagrangian

The leading-order chiral Lagrangian for the decay $V \to P\gamma^{(*)}$ is:

\[
\mathcal{L}_{\text{indir.}} = -\frac{1}{16f} h_A \varepsilon^{\mu\nu\alpha\beta} \text{tr}\{[V_{\mu\nu}, (\partial^\tau V_{\tau\alpha})] + \partial_\beta \Phi\} - \frac{1}{16f} b_A \varepsilon^{\mu\nu\alpha\beta} \text{tr}\{[V_{\mu\nu}, V_{\alpha\beta}] + [\Phi, \chi_0]_+\} - \frac{e_V m_V}{4} \text{tr}\{V^{\mu\nu} Q \partial_\mu A_\nu\}
\]

\Rightarrow only decays via virtual vector mesons allowed

Decay photon into dilepton: usual QED
Uncertainties of our method

Rough estimate: one particular next-to-leading-order term

\[\mathcal{L}_{\text{dir.}} = - \frac{1}{4f m_V} e_A \varepsilon^{\mu \nu \alpha \beta} \text{tr}\{[Q, (\partial^{\tau} V_{\tau \alpha})] + \partial_{\beta} \Phi \partial_{\mu} A_{\nu}\} \]

\Rightarrow \text{direct decay } V \rightarrow P\gamma^{(*)}

Parameters fixed by two-body decays \(V \rightarrow P\gamma \)

\[\Leftarrow \text{parameter sets (P1) with } e_A = 0 \text{ and (P2) with } e_A \neq 0 \]

For decays into dileptons: no additional parameters needed

\Rightarrow \text{predictive power}
Decay $\omega \rightarrow \pi^0 l^+ l^-$

Isospin conservation: decay only possible via virtual ρ^0-meson

\Rightarrow standard VMD (with invariant mass $|q|$ of the dilepton):

$$F_{\omega \pi^0}^\text{VMD}(q) = \frac{m_\rho^2}{m_\rho^2 - q^2}$$

\hookrightarrow our calculations yield an additional constant term:

$$F_{\omega \pi^0}(q) \sim -h_A + \frac{(m_\omega^2 + m_\rho^2) h_A - 8 b_A m_\pi^2}{m_\rho^2 - q^2}$$
data taken by NA60 for decay
\[\omega \rightarrow \pi^0 \mu^+ \mu^- \]

standard VMD fails to explain data

our calculations miss only the last three data points

\[
\Gamma_{\omega \rightarrow \pi^0 \mu^+ \mu^-} = (9.85 \pm 0.58) \times 10^{-7} \text{ GeV}
\]

\[
\Gamma_{\omega \rightarrow \pi^0 e^+ e^-} = (6.93 \pm 0.09) \times 10^{-6} \text{ GeV}
\]

Decay $\phi \rightarrow \eta e^+ e^-$

Relatively large error bars
\rightarrow no assessment possible

$\Gamma_{\phi \rightarrow \eta e^+ e^-} = (4.64 \pm 0.26) \cdot 10^{-7}$ GeV

$\Gamma_{\phi \rightarrow \eta e^+ e^-}^{\text{exp.}} = (4.90 \pm 0.47) \cdot 10^{-7}$ GeV

Prediction:
$\Gamma_{\phi \rightarrow \eta \mu^+ \mu^-} = (2.75 \pm 0.29) \cdot 10^{-8}$ GeV

Summary and Outlook

Transition $\omega \to \pi^0$ and $\phi \to \eta$:

- form factor data well described
- $\omega \to \pi^0$ form factor much better described than with VMD
- widths agree well with experimental ones

Outlook:

- systematic inclusion of η' meson
- next-to-leading-order calculations
Thanks for your attention.
Backup
\[V_{\mu\nu} = \begin{pmatrix} \rho_{\mu\nu}^0 + \omega_{\mu\nu} & \sqrt{2}\rho_{\mu\nu}^+ & \sqrt{2}K_{\mu\nu}^+ \\ \sqrt{2}\rho_{\mu\nu}^- & -\rho_{\mu\nu}^0 + \omega_{\mu\nu} & \sqrt{2}K_{\mu\nu}^0 \\ \sqrt{2}K_{\mu\nu}^- & \sqrt{2}\bar{K}_{\mu\nu}^0 & \sqrt{2}\Phi_{\mu\nu} \end{pmatrix} \]

\[\Phi = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}}\eta_8 & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}}\eta_8 & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\bar{K}^0 & -\frac{2}{\sqrt{3}}\eta_8 \end{pmatrix} + \sqrt{\frac{2}{3}}\eta_1I_{3\times3} \]
\[\chi_0 = \begin{pmatrix} \bar{m}_\pi^2 & 0 & 0 \\ 0 & \bar{m}_\pi^2 & 0 \\ 0 & 0 & 2\bar{m}_K^2 - \bar{m}_\pi^2 \end{pmatrix} \]

\[Q = \begin{pmatrix} \frac{2}{3} & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix} \]
Form factor for the $\phi \rightarrow \eta$ transition:

$$f_{\phi\eta}(q) = \frac{2m_\phi}{3\sqrt{6}fm_ve} \left[-e_A - 2b_Ae_Vm_V^2 \frac{2\bar{m}_K^2 - \bar{m}_\pi^2}{m_\phi^2} S_\phi(q^2)
ight]$$

$$+ \frac{1}{4}e_Vh_Am_V^2 \left(1 + \frac{q^2}{m_\phi^2} \right) S_\phi(q^2) \right]$$
Results

Decay of vector mesons (predictions):

\[\omega \rightarrow \eta \mu^+ \mu^- : \]
\[\Gamma^{\text{calc}} = (8.51 \pm 0.01) \cdot 10^{-12} \text{ GeV} \]

\[\omega \rightarrow \eta e^+ e^- : \]
\[\Gamma^{\text{calc}} = (2.72 \pm 0.09) \cdot 10^{-8} \text{ GeV} \]

\[\phi \rightarrow \eta \mu^+ \mu^- : \]
\[\Gamma^{\text{calc}} = (2.75 \pm 0.29) \cdot 10^{-8} \text{ GeV} \]